Creating your own JuypterHPC container
Users with more complex requirements can build their own Apptainer containers and load them in JupyterHPC to be able to access them on the web.
The following basic container recipe can be used as a starting point. It is important to keep the version of the jupyterhub package close to the one that is currently used on the hub (4.1.5).
Bootstrap: docker
From: condaforge/miniforge3
%post
export DEBIAN_FRONTEND=noninteractive
apt update
apt upgrade -y
conda install --quiet --yes \
'ipyparallel' \
'notebook=7.2.1' \
'jupyterhub=4.1.5' \
'jupyterlab=4.2.3'
# Here you can add your own python packages
conda install --quiet --yes \
pandas \
scipy \
seaborn
A jupyterhub-singleuser
binary that is compatible with the hub must be in the $PATH
of the container for a successful startup. Otherwise you can extend the container as much as you want.
A more complex example that includes RStudio integration as well as PyTorch is shown below:
Bootstrap: docker
From: condaforge/miniforge3
%post
export DEBIAN_FRONTEND=noninteractive
apt update
apt upgrade -y
apt install -y --no-install-recommends software-properties-common dirmngr
wget -qO- https://cloud.r-project.org/bin/linux/ubuntu/marutter_pubkey.asc | tee -a /etc/apt/trusted.gpg.d/cran_ubuntu_key.asc
add-apt-repository "deb https://cloud.r-project.org/bin/linux/ubuntu $(lsb_release -cs)-cran40/"
add-apt-repository ppa:c2d4u.team/c2d4u4.0+
apt update
apt install -y \
r-base \
r-cran-caret \
r-cran-crayon \
r-cran-devtools \
r-cran-forecast \
r-cran-hexbin \
r-cran-htmltools \
r-cran-htmlwidgets \
r-cran-plyr \
r-cran-randomforest \
r-cran-rcurl \
r-cran-reshape2 \
r-cran-rmarkdown \
r-cran-rodbc \
r-cran-rsqlite \
r-cran-shiny \
r-cran-tidyverse
apt install -y libclang-dev lsb-release psmisc sudo
ubuntu_release=$(lsb_release --codename --short)
wget https://download2.rstudio.org/server/${ubuntu_release}/amd64/rstudio-server-2023.12.1-402-amd64.deb
dpkg --install rstudio-server-2023.12.1-402-amd64.deb
rm rstudio-server-2023.12.1-402-amd64.deb
echo 'ftp_proxy=http://www-cache.gwdg.de:3128' >> /usr/lib/R/etc/Renviron.site
echo 'https_proxy=http://www-cache.gwdg.de:3128' >> /usr/lib/R/etc/Renviron.site
echo 'http_proxy=http://www-cache.gwdg.de:3128' >> /usr/lib/R/etc/Renviron.site
echo '' >> /usr/lib/R/etc/Renviron.site
conda install --quiet --yes \
'ipyparallel=8.8.0' \
'jupyter-rsession-proxy=2.2.1' \
'notebook=7.2.1' \
'jupyterhub=4.1.5' \
'jupyterlab=4.2.3'
conda install --quiet --yes \
dgl \
igraph \
keras \
pandas \
pydot \
scikit-learn \
scipy \
seaborn
For HPC Desktops, even the smallest example would consist of over 100 lines, thus they will not be repeated here. Please take your inspiration from the original recipes under /sw/viz/jupyterhub-nhr/juypter-containers/