
Ansys Fluent – nozzle flow
CPU versus GPU runs

15.6.2023

Lewin Stein

1/23Intro

Content

1. Ansys Fluent overview & licensing

2. Fluent TUI & example call

3. Setup of testcase – RANS of 3D steady subsonic nozzle flow

4. Tweaks needed for native GPU solver

5. Live demo: runtime & energy consumption CPU vs. GPU

2/15

Ansys www.hlrn.de/doc/display/PUB/Ansys+Suite

• big commercial engineering suite incl. two CFD solvers (unstructured* FVM):

• Fluent: cell-centered, general (e.g. more mesh types), GPU acceleration*, more support ← todays focus

• CFX: vertex-centered, specialized for turbomachinery

• HPC ready: brings own MPI, shared/distributed memory mode and pinning is auto deduced*

• Fluent solver differentiation (both for steady and transient flow):

• pressure-based (not/mildly compressible)

→ segregated (predictor-corrector approach e.g. SIMPLE)

→ coupled (faster convergence* but larger system to solve/save in memory simultaneously)

• density-based (highly compressible)
→ coupled – implicit
→ coupled – explicit (e.g. Runge-Kutta time stepper)

3/15

* apart of exceptions!

Ansys - licensing

4/15

scontrol show lic license type nr. module add
(CPU cluster)

module add
(Berlin GPU cluster)

aa_r research: job number 25 19.0-2 (2018)
2019r2
2020r2
2022r1
2022r2
2023r1

2022r2_IntelMPI
2023r1_IntelMPI

aa_r_hpc research: total core number beyond 4
(if GPU native, one A100 ≅ 72-99 cores ?)

2498

aa_t_a teaching: job number (4 core max.) 250

• Do you fullfill the Ansys license conditions (industry financed projects are prohibited) ?
If yes, apply at support@hlrn.de to become a Ansys group member and use our licenses.

• Alternatively, you can bring your own license: www.hlrn.de/doc/display/PUB/How+to+bring+your+own+license

• If you want to use our licenses always add #SBATCH -L ansys to your submission script !

licenses in Berlin

dim. noGUI task# MPI type nodename list instead of interactive input
(bind-to core (bcn1001
is default) bcn1001

bcn1001…)

#!/bin/bash
#SBATCH -t 00:10:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=96
#SBATCH -p standard96:test
#SBATCH -L ansys

module load ansys/2023r1
srun hostname -s > hostfile

fluent 2d -g -t${SLURM_NTASKS} -mpi=intel -cnf=hostfile -i textUI.jou

cas & dat input file

Fluent example call

5/15

textUI.jou

file/read-cas initial_run.cas.h5
solve/iterate 10
file/write-case-data outputfile
exit

SLURM script:

hyperthreading
is inadvisable

6/15

Fluent example job - daytime sea breeze
www.hlrn.de/doc/display/PUB/Fluent

co
ns

ta
nt

 h
ot

 b
ou

nd
ar

y
 (l

an
d)

co
ns

ta
nt

 c
ol

d
bo

un
da

ry
 (

se
a)

Testcase: 3D subsonic nozzle flow
• Source: Ansys Fluent Tutorial Guide (2023 R1)

Ch. 8: Modeling Transient Compressible Flow – requires geometry file of nozzle
Access only for Ansys group members:
/sw/eng/ansys_inc/v231/doc_tutorials/Fluent_Tutorial_Package/00 Ansys_Fluent_Tutorial_Guide_2023_R1.pdf
/sw/eng/ansys_inc/v231/doc_tutorials/Fluent_Tutorial_Package/transient_compressible.zip

•Old 2D guide (but freely accessible) 2D version – setup of nozzle geometry is included
https://alfaproject.ir/wp-content/uploads/2020/02/part6.pdf

• Our 3D testcase is adapted from the source above. All needed files are included in
www.hlrn.de/doc/download/attachments/81232167/fluent_demo_cpu_vs_gpu.zip
These are:
• nozzle_gpu_supported.cas.h5 → geometry & solver setup (adapted for the native GPU solver)
• 00_submit_me_cpu.sh* → Slurm script to submit the job to a standard 96-core node
• 00_submit_me_gpu.sh* → Slurm script to submit the job to a A100-GPU (with one host core)
• tui_input.jou → Ansys text user interface commands to iterate the steady solver 1000 times
• postprocessing_cmds.txt* → bash commands to check mass conservation & to extract runtimes/energy

* mashine specific
7/15

Ansys Fluent - GPU support
• Since 2014 GPU offload “-gpgpu” → best if linear eq. system solver of multigrid method dominates

• Since 2023 GPU native “-gpu” beta feature → most work is done by GPU, minimized CPU-GPU data movements

• The number of CPU-cores (e.g. ntasks-per-node=72) must be an integer multiple the GPUs (e.g. gres=gpu:4),
all nodes must have the same layout

8/15

Subsonic nozzle flow – setup

9/15

0.2 m
Pressure inlet
u = hybrid init.
p = 0.9 atm
T = 300°C

Air as ideal gas
cp = 1006.43 J/kg/K (specific heat)
𝜆 = 0.0242 W/m/K (therm. conductivity)
𝜇 = 1.7894 10-5 kg/m/s (dyn. viscosity)
M = 28.966 g/mol (molecular weight)

Turbulence model
RANS: SST k–ω (2 eqn, shear stress transport)

Pressure outlet
u = hybrid init.
p = 0.7369 atm
T = 300°C

Solution methods and models (FVM)
density-based (coupled, compressible)
viscous, energy eq. with viscous heating (𝜆 term)
flux type: Roe flux-difference splitting (FDS)
• time discretization
steady, implicit, pseudo time-stepping, CFL = 25
• spatial discretization
Gradient terms: least squares cell-based
Other transport terms (flow, k, ω): 2nd order upwind

Wall no-slip, adiabatic (heat flux = 0)

10/15

0.2 m
Pressure inlet
u = hybrid init.
p = 0.9 atm
T = 300°C

Air as ideal gas
cp = 1006.43 J/kg/K (specific heat)
𝜆 = 0 ? (therm. conductivity)
𝜇 = 1.7894 10-5 kg/m/s (dyn. viscosity)
M = 28.966 g/mol (molecular weight)

Turbulence model
RANS: SST k–ω (2 eqn, shear stress transport)

Pressure outlet
u = hybrid init.
p = 0.7369 atm
T = 300°C

Solution methods and models (FVM)
pressure-based (segregated, mildly compressible)
viscous, energy eq. with viscous heating (𝜆 term)
flux type: Rhie-Chow - momentum based
• time discretization
steady, SIMPLE, pseudo time-stepping, CFL = 25
• spatial discretization
Gradient terms: least squares cell-based
Other transport terms (flow, k, ω): 2nd order upwind

Wall no-slip, adiabatic (heat flux = 0)

Subsonic nozzle flow – setup for GPU native

Subsonic nozzle flow – automatic adaption

11/15

Volume Mesh
Elements = poly-hexcore
Min. Cell Length = 5 mm
Max. Cell Length = 20 mm

Automatic Mesh Adaption
Frequency (iteration) = 20
Criterion: shock indicator - density-based

Subsonic nozzle flow – automatic adaption

12/15

Volume Mesh
Elements = poly-hexcore
Min. Cell Length = 5 mm
Max. Cell Length = 20 mm

Automatic Mesh Adaption
Frequency (iteration) = 20
Criterion: shock indicator - density-based

deactivated for GPU native

Subsonic nozzle flow - solution

13/15

pressure

Mach number

Mass flow rate - difference inlet/oulet

Iteration step

14/15

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1 101 201 301 401 501 601 701 801 901 1000

|difference|

Absolute
difference
[kg/s]

Subsonic nozzle flow – CPU vs. GPU

15/15

Node type Time per step
[s]

Speedup
(normalized)

Energy per step
[Watt s]

Energy used per step
(normalized)

CPU only – 96 core (360GB) 0.114 1 161.251 2.1

GPU offload – 1 core, 1 A100 (80GB) 6.035 0.02

GPU native – 1 core, 1 A100 (80GB) 0.037 3.1 76.597 1

GPU native – 4 core, 4 A100 (4x80GB) 0.054 2.1

Thank You

16/15

Any questions or feedback ?

