
How to parallelize
with CPUs & GPUs

15.6.2023

Lewin Stein

1/23Intro

Structure

1. Hierarchy of the hardware architecture

2. Parallelization approaches and their implementation

3. Parallelization in CFD: spatial decomposition

4. How to evaluate your parallelization

2/23

Intel Xeon Cascade Lake (CXL) node

3/23

NVMe SSD up to 2TB

ethernet

PCIe v3.0 x16

power
connec-
tors

384-1522GB total RAM

4x 6-channel
DDR4-2933

100G OPA
Host Fabric
Interface

M.2

QSFP28

www.intel.com/content/dam/support/us/en/documents/server-products/server-systems/intel-server-system-s9200wk-tps.pdf

2 sockets & 4 NUMA domains/dies per node

4/23

96GB
3xDDR4
RAM
2933Hz

CLXCLX

CLXCLX

LBGDMI 3x16
PCIe*

UPI
Ultra
Path
Inter-
connect

RAM

RAM RAM

network
adapter

evtl. GPU

RAM

CPU socket 0

CPU socket 1Intel Xeon Cascade Lake (CXL) node

https://en.wikichip.org/w/images/0/0d/intel_xeon_scalable_processor_architecture_deep_dive.pdf

24 cores per NUMA domains/die

5/23

Sub-NUMA Cluster (SNC)

Prior generation supported Cluster-On-Die
(COD)

SNC provides similar localization benefits
as COD, without some of its downsides

• Only one UPI caching agent required even
in 2-SNC mode

• Latency for memory accesses in remote
cluster is smaller, no UPI flow

• LLC capacity is utilized more efficiently
in 2-cluster mode, no duplication of lines
in LLC

23

2x UPI x 20 PCIe* x16 PCIe x16
DMI x 4
CBDMA

On Pkg
PCIe x16

1x UPI x 20 PCIe x16

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

CHA/SF/LLC

Core

MCDDR4

DDR4

DDR4

MC DDR4

DDR4

DDR4

3x
D

D
R4

 2
66

7

3x
D

D
R4

 2
66

7

SNC Domain 0 SNC Domain 1

3xDDR4
RAM

2933Hz

CLXCLX

CLXCLX

LBGDMI 3x16
PCIe*

UPI
Ultra
Path
Inter-
connect

RAM

RAM RAM

The 24 (28) cores of a die share the L3-cache
and have uniform memory access.network

adapter

L3-cache →

evtl. GPU

https://en.wikichip.org/w/images/0/0d/intel_xeon_scalable_processor_architecture_deep_dive.pdf

unit children of unit accessible
storage/memory

switch
network

24 nodes per switch HDD

“work”

SSD

“work”

node 48x2 cores (2 sockets) local SSD @PCIe

socket 24x2 cores (2 dies) NUMA

die 24 cores UMA, L3-cache

core L1,L2-cache

1

6/23

Hardware scales/hierarchy of a CPU node

natural
scaling /

locality steps

optimization chances
hlrn.de/doc/display/PUB/Special+Filesystems

Cascade Lake node

OPA
network
adapter

LBG
DMI Gen 3 (X4)

DDR4
12 DIMMs

UPI
(10.4GTs)

DDR4
12 DIMMs

2-Socket S9200WK Compute Module
CPU CPU

Die0

Die1

Die0

Die1ex
cl

us
iv

e
sh

ar
ed

NVIDIA A100 GPU (80GB)

7/23

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

Streaming Multiprocessor (SM)

The 108 (128) SMs of a A100 die share the L2-cache and have
uniform memory access.

an SM has: shared L1-cache
4 Tensor Cores (FP16-32)
64 FP32 CUDA Cores
64 INT32 CUDA Cores
32 FP64 CUDA Cores

8/23

Links between two CPU-GPU nodes

CPU

network e.g. OPA or infiniband

LBG
DMI Gen 3 (X4)

DDR4
12 DIMMs

UPI
(10.4GTs)

DDR4
12 DIMMs

2-Socket S9200WK Compute Module
CPU CPU

Die0

Die1

Die0

Die1

CPUPCIe

A100

PCIe

A100

A100 A100PCIe PCIe

N
VL

in
k

Node: 2 sockets, 4 dies, 4 A100

CPU

LBG
DMI Gen 3 (X4)

DDR4
12 DIMMs

UPI
(10.4GTs)

DDR4
12 DIMMs

2-Socket S9200WK Compute Module
CPU CPU

Die0

Die1

Die0

Die1

CPUPCIe

A100

PCIe

A100

A100 A100PCIe PCIe

NVLink
brings
RDMA

24
cores

108 SMs
17712 cores Fixed roles: CPU is host, GPU accelerator/offload device

How to parallelize at all scales

9/23

hierarchy provides program structure

typical
range

memory class / style API name of
virtual unit

size of unit

high inter node
local network

distributed
(RDMA)

Multiple Instruction Multiple Data
(typically 1 process per core) MPI processes /

ranks
memory
per core

mid intra node shared
(N)UMA

MultiThreading
(multiple threads for multiple cores)

OpenMP,
(MPI) threads < L3-cache

per core

low

intra die shared UMA
(L3-cache)

Single Instruction Multiple Data
(on one thread and one core)

SYCL
OpenCL/-MP

processing
elements

register size
(CLX: 512 bit)

intra GPU
(accelerator)

shared
within GPU

Single Instruction Multiple Threads
(using multiple threads and cores)

CUDA, SYCL
OpenCL/-MP threads memory per

GPU SM

CPU versus GPU

one big core

general HPC applications

high and low level parallelization

minimal memory latency

can handle random memory access

10/23

Streaming Multiprocessor made of many small cores

massively data parallel applications

low level parallelization e.g. vectorization or SIMT

optimized for data throughput / memory bandwidth
(best for large problem sizes)

most efficient for sequential/linear memory access

Which API to choose?

11/23

Which API to choice for which processor type

Application Programming Interface
Programming language CPU GPU

C/C++ Fortran Python Intel AMD ARM Intel AMD Nividia

MPI ✓ ✓ (✓) ✓ ✓ ✓ ~ ~ ~

OpenMP (directives) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
OpenCL ✓ ~ (✓) ✓ ✓ ✓ ✓ ✓ ~

SYCL (DPC++, hipSYCL, triSYCL, …) ✓ (✓) (✓) (✓) (✓) (✓) ~

ROCm / HIP (AMD) ✓ (✓) (✓) ~ ~ ~ ✓ ✓
CUDA (Nividia) ✓ (✓) (✓) ✓

Legend

✓ directly

(✓) via extension

~ limited functionality

Parallelization Hierarchie

memory class / style API virtual
unit name

size of unit typical
range

high distributed

inter node

Multiple Instruction Multiple Data

(typically 1 process per core)

MPI processes
/ ranks

memory per
core

local network

mid shared

intra node

MultiThreading

(typically many processes per core)

OpenMP,

(MPI) threads <= memory

per core
within (N)UMA

domain

low

shared

intra die

Single Instruction Multiple Data

(on one thread)

SYCL

OpenCL/-MP

processing
elements

register size
(SKL: 512 bit)

L3-cache /
UMA

shared

within GPU

Single Instruction Multiple Threads

(using multiple threads)

CUDA, SYCL
OpenCL/-MP threads memory per

gpu-core
within GPU
(accelerator)

1

(✓)

Ordering matters at all scales

v Network
an edge switch holds odd or even nodes (edge[1]⇄bcn[1,3,5,7,…,47]) → slurm places jobs “edge aware”

 (and ignors leafs/directors L)
v Pinning/Affinity “Bind process to core” (min. cache misses), MPI flags:

scatter (intel) / rank-by L3cache:span (gnu) → max. memory bandwidth for partial node use
compact (intel) / map-by core (gnu) → faster copy between cores (closer memory)

v Data Structures/Arrays
Array of Structs (people[i].name: Bob,5; Eve,7) → intuitive/readable (AoSoA needed if SoA to big)
Struct of Arrays (people.name[j]: Bob,Eve; 5,7) → item of same type more close (SIMD/T)

v Nested loops (linear access of cache lines, memory, storage)
Colum major order (A[i,j,k]): outer-k, mid-j, inner-i loop) → Fortran
Row major order (A[i,j,k]): outer-i, mid-j, inner-k loop) → C/C++, Python

12/23

low

low

mid/
high

high

Local physics scales best
space/time local:

• transport processes (hyperbolic), diffusion (parabolic)

• example: compressible fluids

• information spreads at finite speed

algorithms suggested by locality:

• explicit (time) integration

• differentiation operator with a few side diagonals

parallelization suggested by locality:

• partitioning in “local” blocks exchanging boundary
information only (MPI_Send & Receive)

13/23

space/time global:

• steady state (elliptic PDEs)

• example: incompressible fluids, stiff systems

• information spreads at infinite speed

algorithms accompanying globality:

• implicit/iterative (time) integration

• compact/spectral operators (full matrix)

parallelization suggested by globality:

• partition-switching providing all info. of at least
one dimension at once (MPI_Alltoall)

MPI
process

Multi-Block vs. “FFTW” partitioning

1
2
3
4 1 2 3 4

MPI_Alltoall
resort

∂ξu

∂
η u

∂ξu
∂ξu
∂ξu

∂
η u

∂
η u

∂
η u

η
ξ

14/23

1 2

3 4

∂ξu∂
η u

∂ξu∂
η u

∂ξu∂
η u

∂ξu∂
η u

MPI_Send
& _Receive

MPI
process

boundary area
(ghost cells, halos)

Multi-Block vs. “FFTW” partitioning

15/23

1 2

3 4

∂ξu∂
η u

∂ξu∂
η u

∂ξu∂
η u

∂ξu∂
η u

MPI_Send
& _Receive

weak-scaling overhead of communication
= boundary area/total area

MPI
process

weak-scaling overhead of communication
∝ 1−1/np

MPI
process

boundary area
(ghost cells, halos)

number
of processes

boundary
area

Multi-Block vs. “FFTW” partitioning

1
2
3
4 1 2 3 4

MPI_Alltoall
resort

∂ξu

∂
η u

∂ξu
∂ξu
∂ξu

∂
η u

∂
η u

∂
η u

η
ξ

16/23

1 2

3 4

∂ξu∂
η u

∂ξu∂
η u

∂ξu∂
η u

∂ξu∂
η u

MPI_Send
& _Receive

Ordering a mesh most locally

17/23

nonconforming
quadrilateral

unstructured
triangular

structured
quadrilateral

structured
quadrilateral

“FFTW” partitions
(global in one dimension)

→ row by row

MPI process 0 MPI process 1

SIMD/T SIMD/T SIMD/T ··· SIMD/T SIMD/T SIMD/T ···

multi-block/-element (local)

→ space filling curves (Hibert, Peano,…)

Ordering a mesh most locally

18/23

unsorted
sorted by

reverse Cuthill–McKee method

symmetric matrix indicating all neighbors of each element (a.k.a. Verlet list)

MPI process 0 MPI process 1

SIMD/T SIMD/T SIMD/T ··· SIMD/T SIMD/T SIMD/T ···

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

element
numbers

Roofline model → optimization idea
The max. theoretical performance “Pideal” is limited by

v maxFLOP/s = maximal FLoating point OPerations per second conducted by a certain computation unit (cpu)

v minB (Bandwidth) = minimal byte/s = transfer rate of slowest data path (bandwidth of main memory or cache)

v I (arithmetic Intensity) = FLOP/byte = FLOP/(size of instruction needed to conduct the operation)

19/23

Pideal = min[I × minB, maxFLOP/s]

I

maxFLOP/s

I ×minB
bound

compute bound

A profiler (VTune)
shows position of

your code
?

Enemys of ideal scaling & sweet spot ★
Serial scaling
(np=1)

20/23

P = N
np× time per process

N = sum of spatial elements
P

11 N

Possible effects:

cache match

memory swapping [free –m]

communication complexity (inter core)

low arithmetic intensity (instructions>N)

serial fraction dominates a.k.a. Amdahl's law
(global operations, initialization overhead)

P

Weak scaling
(⁄N np=constant)

np

Strong scaling
(N=constant)

P

np
★

★

Practical advices for CFD-solver scaling

weak scaling prodecure

21/23

doubled spatial domain with constant dx

constant domain with doubled elements
(potential adaption of time stepper!)

recommended

alternative

cores per node?
full

partial

recommended if N per core is tunable (sweet spot run)

more memory (bandwidth/size) per core
(process pinning matters!)

dx

Scaling literature
Book: “Big CPU, Big Data” (Ch.9: Strong Scaling, Ch.10: Weak Scaling), Alan Kaminsky

Article: “Amdahl's Law, Gustafson's Trend, and the Performance Limits of Parallel Applications”, Matt Gillespie

Article: “Parallel Application Scaling, Performance, and Efficiency”, David Skinner & Katie Antypas

Book: “Using HPC for Computational Fluid Dynamics” (Ch. 3), Shamoon Jamshed

Book: “Introduction to High Performance Computing for Scientists and Engineers”, Georg Hager & Gerhard Wellein

https://www.hlrn.de/doc/display/PUB/Workshop+2020+Material

https://www.d.umn.edu/~tkwon/course/5315/HW/MultiprocessorLaws.pdf

http://www.cs.columbia.edu/~martha/courses/4130/au12/scaling-theory.pdf

https://www.hlrs.de/about-us/media-publications/teaching-training-material

https://geb.sts.nt.uni-siegen.de/hpcfd/pages/materialien.html

22/23

https://www.d.umn.edu/~tkwon/course/5315/HW/MultiprocessorLaws.pdf
https://www.d.umn.edu/~tkwon/course/5315/HW/MultiprocessorLaws.pdf
http://www.cs.columbia.edu/~martha/courses/4130/au12/scaling-theory.pdf
https://www.hlrs.de/about-us/media-publications/teaching-training-material
https://geb.sts.nt.uni-siegen.de/hpcfd/pages/materialien.html

That’s it.

Any questions?

23/23

unit connected
nodes/cores

link: ↑↓ or
↔ units

length of
link [m]

accessible
storage/memory

director
-switch

all nodes OPA (5 hops) 10 HDD

“work”

SSD

“work”

leaf-
switch

24x8 nodes (2 racks) OPA (3 hops) 10

edge-
switch

24 nodes OPA (1 hop) 1

node 48x2 cores (2 sockets) OPA adapter 0.1 local SSD @PCIe

socket 24x2 cores (2 dies) UPI-links 0.1 NUMA

die 24 cores UPI-links 0.1 UMA, L3-cache

core future accelerators interconnects 0.01 L1,L2-cache

1

24/23

Omni-Path (OPA) network of Lise

