Welcome to the CFD-Workshop Day

15.6.2021

Lewin Stein

Welcome

Please ask questions anytime → unmute + chat

Materials/all slides → www.hlrn.de/doc/display/PUB/CFD+Day+2023

Agenda

10am morning session

CFD project planning on a supercomputer, parallelization concepts, scaling tests [Lewin Stein - NHR@ZIB]

Running OpenFOAM on the GPU [Ogaja - NHR@GWDG]

12.30pm lunch break (1h)

13.30pm afternoon session

Flow solver CODA – How to simulate aircraft on GPUs [Immo Huismann – DLR]

Ansys Fluent - nozzle flow (CPU vs GPU) [Lewin Stein - NHR@ZIB]

CFD project planning on a supercomputer

15.6.2021

Lewin Stein

Start small if you plan big

Preparation on a test-account minimizes delay-risk of big projects

- ✓ compile beforehand (check system environment: flags, modules, library paths)
- ✓ scalability test of your software → recommended for project proposals, "sweet spot" detection
- ✓ plan data workflow (size/file-number/temporal limits of home-, local-, (ssd)work-, perm-storage)

Minimal examples are speed boosters of your big project

- √ easy debugging
- ✓ provide "unit tests"
- ✓ full cycle check (compile, run, evaluate results, optimize code)
- ✓ enable others (us) to help you
- √ fit in test-queue (fast feedback)
- ✓interactive execution (even faster feedback) salloc -p standard96:test ssh \$SLURM_NODELIST

Your time required for data mangement

Critical supercomputer resources

"A supercomputer is a device for turning compute-bound problems into I/O-bound problems." Ken Batcher

uncritical / independent: local operations on compute-nodes

moderate / shared: cpu load of login-nodes

critical / scarce + shared: many file-I/O on work (Lustre)

→ Stay below 10 file access per cpu-core per minute.

(as temporal average of your job)

Numerical Precision

 $\Delta E, \Delta M$

 \rightarrow 15-16 decimal digits

```
rounding error: ambient pressure 10000.000 Pa
(32 bit) + human voice + 0.025 Pa
= 10000.02 or 10000.03
```

Only use double if needed by physical problem (range of system scales >106).

Optimization hints

- optimize most expansive lines first "Pareto principle"
- serial performance (underestimated) is as important as scalability
- high impact, low effort: tic&toc, htop to check memory/affinity (before VTune, TotalView)
- use libraries whenever suitable "standing on the shoulders of giants"
 module avail → MPI, HDF5/NetCDF, FFTW, BLAS, ...

Access to & Application for Lise & Emmy

Has your principal investigator (PI) an address at a public German university?

Open your test account any time at https://zulassung.hlrn.de
(75k up to 300k cpu-hours per quarter)

Yearly application deadlines of full projects are: 28.1, 28.4, 28.7, 28.10.

You will get feedback within 8 weeks and cpu-h credited at: 1.4, 1.7, 1.10, 1.1.

More details? Look here:

www.hlrn.de/doc/display/PUB/Application+Process

How to access our GPU? Look here: www.hlrn.de/doc/display/PUB/GPU+A100+Partition

Access to & Application for Lise & Emmy

Electronic project application form for NHR

Start Page

Welcome to JARDS, please choose if you want to create an application or review submitted applications.

Before you can create an application you must choose the application kind.

Select Appkind *

Large project?
20 M. core-h/year or more...

√ Please select a category

NHR Normal

NHR Large

Open Reviews

NHR Test/Preparation

Open Applications

n you must be registered as a reviewer.

Not functional yet

use https://zulassung.hlrn.de

7/8

Hints for a successful application

Provide arguments why exactly N runs are necessary.

Proof that your specific case scales well on our specific machine.

Demonstrate your HPC experience.

Read: www.hlrn.de/doc/display/PUB/Project+proposal