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Agenda

1. Automatic Tuning

2. Multiple Endpoints / Asynchronous progress
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Tuning
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Motivation

“The optimal algorithm and the optimal buffer size for a given message size
depends on a given configuration of the system including the gap values of the 
networks, memory models, the underlying communication layer etc. The optimal 
parameters for a system can be best determined by conducting experiments on 
the system.”

[Automatically Tuned Collective Communications –

Sathish S. Vadhiyar, Graham E. Fagg, Jack Dongarra –

Computer Science Department - University of Tennessee, Knoxville]
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Example: MPI_Allgather()
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2 3
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Intel® MPI Allgather Implementation

Environment Variable Collective 
Operation

Algorithms

I_MPI_ADJUST_ALLGATHER MPI_Allgather 1.  Recursive doubling algorithm
2.  Bruck's algorithm
3.  Ring algorithm
4.  Topology aware Gatherv + Bcast algorithm
5.  Knomial algorithm

I_MPI_ADJUST_<opname>=<algid>[:<conditions>][;<algid>:<conditions>[...]]

Don’t use this Tuning Approach!!!
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Intel MPI library tuning approaches

mpitune
mpitune_fast

tuner
autotuner

Micro benchmark tuning

Application tuning

Easy of use

Cluster time

Adoption to environment
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Intel MPI Library 2019 autotuner tuning flow

No extra calls. Pure application driven tuning

The procedure is performed for each message size and for each communicator

MPI_Allreduce 1st invocation: I_MPI_ADJUST_ALLREDUCE=0

MPI_Allreduce 2nd invocation: I_MPI_ADJUST_ALLREDUCE=1

…

MPI_Allreduce k-th invocation: I_MPI_ADJUST_ALLREDUCE=algo_id_max

MPI_Allreduce (k+1)-th invocation: I_MPI_ADJUST_ALLREDUCE=best_algo_id

MPI_Allreduce N-th invocation: I_MPI_ADJUST_ALLREDUCE=best_algo_id

…
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Get started with the autotuner

1. Step 1 – Enable autotuner and store results (store is optional):

• $ export I_MPI_TUNING_MODE=auto

• $ export I_MPI_TUNING_BIN_DUMP=./tuning_results.dat

• $ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -iter 1000,800 -time 4800

2. Step 2 – Use the results of autotuner for consecutive launches (optional):

• $ export I_MPI_TUNING_BIN=./tuning_results.dat

• $ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -iter 1000,800 -time 4800

NOTE: You may adjust number of tuning iterations (minimal overhead/maximum precision balance) and 
use autotuner with every application run without results storing.
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Environment Variables - Main flow control

▪ I_MPI_TUNING_MODE=<auto> Enable autotuner (disabled by default)

▪ I_MPI_TUNING_AUTO_ITER_NUM=<number> Tuning iterations number (1 by default).

▪ I_MPI_TUNING_AUTO_SYNC=<0|1> Call internal barrier on every tuning iteration
(disabled by default)

▪ I_MPI_TUNING_AUTO_WARMUP_ITER_NUM=<number> Warmup iterations number (1 
by default). 

NOTE: Assume that there are around 30 algorithms to be iterated. E.g. Application has 10000 invocations of MPI_Allreduce 
8KB. For full tuning cycle I_MPI_TUNING_AUTO_ITER_NUM may be in 30 to 300 (if there is no warmup part) range. High 
value is recommended for the best precision. Iteration number for large messages may depend on 
I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD .

I_MPI_TUNING_AUTO_SYNC is highly recommended for tuning file store scenario.
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Autotuner Example

Configuration possibly slowing down tuning run in favour of results.:

• I_MPI_TUNING_MODE=auto

• I_MPI_TUNING_AUTO_WARMUP_ITER_NUM=1

• I_MPI_TUNING_AUTO_ITER_NUM=10

• I_MPI_TUNING_AUTO_SYNC=1

• I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD=4194304

• I_MPI_TUNING_AUTO_STORAGE_SIZE=4194304

• I_MPI_TUNING_BIN_DUMP=./my_tuning_file.dat

Apply tuning results via

• I_MPI_TUNING_BIN=./my_tuning_file.dat
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Intel MPI library tuning approaches
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mpitune_fast

▪ Starting with IMPI 
2019 U7

▪ Target: system wide 
tuning

▪ Shell script that runs 
IMB under the hood

▪ Similar to autotuner
with IMB target but 
automatically adepts 
#IMB iterations to the 
required minimum

$ mpitune_fast -h

POSIX compatible Intel MPI autotunung script
Usage:

mpitune_fast [OPTIONS]
Options:

-p|--impi-path
Set directory with installed IMPI package.
You can source IMPI environment scripts instead or set I_MPI_ROOT variable.

-d|--results_dir
Set custom directory for tuning results, host files and logs.
Default: current working directory.

-f|--hostfile
Set host file path.
One host name per line. You can set I_MPI_HYDRA_HOST_FILE variable instead.
If you are using SLURM/LSF cluster manager script should detect allocated hosts by itself.

-o|--origin
Set origin tuning file to merge it with new tuning results.
Origin tuning file will not be changed.

-ppn|--ppn
Set custom process per node count list to tune delimited by commas.
Example: 1,8,16
Default: all powers of two up to the physical core count inluding physical core count.

-c|--colls
Set custom collective operations to tune delimited by commas.
Example: allreduce,reduce,allgather
Default: allreduce,reduce,gather,scatter,bcast,barrier
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Multiple Endpoints/Asynchronous 
Progress
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Enhanced support for 
Hybrid Programming Models

• New MPI_THREAD_MULTIPLE model extension

▪ Available with release_mt library version: I_MPI_THREAD_SPLIT=1

▪ New asynchronous progress engine design

▪ Note: not available for OFI/mlx provider (WIP. Only 
OFI/verbs is available for Mellanox)

HW

OFI

MPI

Application 
Threads

Application Process

Thread[0]

API

OFI EP[0]

HW CX[0]

Thread[1]

API

OFI EP[1]

HW CX[1]

Thread[2]

API

OFI EP[2]

HW CX[2]

OFI EP - OFI endpoint

HW CX - Independent HW context



IAGS 18

Multiple Endpoints based features in intel® MPI library 2019

2

▪ Thread-split

▪ Decrease threading computation imbalance - communicate as soon as data is ready, don’t 
wait for the slowest thread

▪ Improve interconnect saturation from single MPI rank (Intel® Omni Path Fabric, InfiniBand 
and Ethernet are supported)

▪ Avoid implied bulk synchronization threading barriers and overhead on parallel sections 
start/stop

▪ Asynchronous progress threads

▪ Offload communication from application threads to MPI progress threads

▪ Improve computation/communication overlap

▪ Parallelize communication by multiple MPI progress threads

Both features are available only for:

▪ Linux

▪ release_mt (non default version)
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Thread-split – strong scaling code modifications

2

#define N 2

int main() {

int i;

int buffer[N];

MPI_Init(NULL, NULL);                                             

#pragma omp parallel for num_threads(N) 

for (i = 0; i < N; i++) 

{

// threaded partial computation

// i-th thread contributes to buffer[i]

}

// single-threaded global communication

MPI_Allreduce(buffer, buffer, N, MPI_INT,

MPI_SUM, MPI_COMM_WORLD);

MPI_Finalize();

return 0; 

}

#define N 2 

int main() { 

int i, provided; 
int buffer[N];

MPI_Comm comms[N];

MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided); 

for (i = 0; i < N; i++)
MPI_Comm_dup(MPI_COMM_WORLD, &comms[i]);

#pragma omp parallel for num_threads(N)
for (i = 0; i < N; i++) 
{

// threaded partial computation
// i-th thread contributes to buffer[i]

// threaded partial communication inside parallel region

MPI_Allreduce(&buffer[i], &buffer[i], 1, MPI_INT,
MPI_SUM, comms[i]);

}

MPI_Finalize();

return 0; 
}
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How to achieve an overlap Compute & Comm

▪ The MPI Standard does not guarantee asynchronous communication 
for non-blocking operations

▪ A helper thread is needed to asynchronously progress a message 
while the (main) application thread is doing computations

▪ Some fabrics support the offloading of specific operations

▪ Async. progress support in IMPI exists for

• P2P operations & blocking collectives

• partial support for non-blocking collectives (MPI_Ibcast, MPI_Ireduce, and 
MPI_Iallreduce).
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How to achieve an overlap Compute & Comm

▪ A helper- thread might imbalance HPC workloads and is therefore 
switched off by default (I_MPI_ASYNC_PROGRESS)

▪ Helper threads currently requires the use of the Multiple Endpoint 
implementation library (release_mt) – currently (2019U8) no SHM 
transport

• source ../mpivars release_mt/debug_mt

• note that release_mt is not the default library 

• default release is also thread safe – supporting all 4 MPI thread levels
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How to achieve an overlap Compute & Comm

• Progress threads can be pinned via 
I_MPI_ASYNC_PROGRESS_PIN=<list>

• Exclude resourced used by progress threads for regular IMPI ranks 
via I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=<list>

• The #of threads per rank can be controlled via 
I_MPI_ASYNC_PROGRESS_THREADS 

• If multiple helper threads per rank are used, the multi ep feature on 
a communicator basis must be used –> requires code changes
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How to achieve an overlap Compute & Comm

• For hybrid MPI jobs (e.g. + OpenMP) 

• number of ranks -> helper threads -> (logical) cores

• helper thread resources (cores) would be relatively low

• For pure (homogeneous) MPI jobs

• helper thread resources would be relatively large

• workaround of pinning multiple helper threads from different ranks on the 
same (shared) resources 
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How to achieve an overlap Compute & Comm

$ source …/mpi/intel64/bin/mpivars.sh release_mt

$ export I_MPI_ASYNC_PROGRESS=1

$ export I_MPI_PIN_PROCESSOR_LIST / I_MPI_PIN_DOMAIN …

$ export I_MPI_ASYNC_PROGRESS_PIN=…
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Documentation

▪ Developer Guide

▪ https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support

▪ https://software.intel.com/en-us/mpi-developer-guide-linux-asynchronous-progress-control

▪ Developer Reference

▪ https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-multi-ep

▪ https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-asynchronous-progress-
control

▪ Code examples

▪ $I_MPI_ROOT/doc/examples

▪ https://software.intel.com/en-us/mpi-developer-guide-linux-code-examples
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https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support
https://software.intel.com/en-us/mpi-developer-guide-linux-asynchronous-progress-control
https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-multi-ep
https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-asynchronous-progress-control
https://software.intel.com/en-us/mpi-developer-guide-linux-code-examples
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QUESTIONS?
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Backup
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Support for InfiniBand* Fabrics

▪ LibFabric verbs currently supports only the RC mode

▪ Stability and performance via verbs is sub-optimal

▪ IMPI 2019 U5 introduces custom (IMPI specific) libfabric mlx provider

▪ Hardware support for Dynamic Connection (DC) mode introduced with
EDR* and newer

Requirements

▪ Intel® MPI Library 2019 Update 5 or higher

▪ Mellanox UCX* Framework v1.4 or higher (Mellanox* OFED)
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Limitations of the Intel MPI mlx provider

IMPI 2019U5 puts UCX into DC transport mode, while InfiniBand* hardware 
older than EDR doesn't support DC.

Check support via
$ ucx_info -d | grep Transports
The output should include dc, rc, and ud transports.  

As a workaround, select RC / UD manually e.g.
$ FI_MLX_TLS=UD

If none of the required transports are present, recheck your UCX 
configuration:  
$ ibv_devinfo
$ lspci | grep Mellanox
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AWS Elastic Fabric Adapter (EFA) Support

▪ Starting with LibFabric 1.9.0 and IMPI 2019 U6 

▪ EFA usage by IMPI can be confirmed using I_MPI_DEBUG

▪ OS-bypass using the Elastic Network Adapter (ENA) on Linux 
instances

▪ AWS supported Instances are

• c5n.18xlarge

• c5n.metal
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SLURM Integration
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SLURM Process Manager Integration

mpirun

hydra

Srun bootstrap

PMI_proxy

MPI Ranks

srun

Srun bootstrap

PMI_proxy

MPI Ranks



IAGS 34

SLURM Process Manager Integration

IMPI Version Configuration

<= 2019 U5 The IMPI process launcher (rank) is checking if the 
I_MPI_PMI_LIBRARY was exposed or not (both srun & 
mpirun will work)

>= 2019U6 Users must choose either srun or mpirun

>= 2019U7 PMI1 & PMI2 are supported. The IMPI selected PMI 
depends on the target of I_MPI_PMI_LIBRARY and has to 
be aligned with the SLURM configuration or aligned with 
the srun user parameter e.g. –mpi=pmi2

>= 2019U8 Dynamic spawning support with PMI2 under SLURM
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Intranode Pinning

IMPI SLURM

I_MPI_HYDRA_BOOTSTRAP=slurm

I_MPI_PIN_RESPECT_CPUSET=0 I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so.0

mpirun srun

ppn etc. --cpus-per-task / --ntasks-per-node / etc.
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Attaching Tools to MPI Ranks under SLURM

Intel MPI launcher

$ mpirun –n 512 –gtool “amplxe-cl -c hpc-performance –r r_hpc_imb:99“ IMB-MPI1 -
npmin 512 AllGather

SLURM launcher

$ cat << EOF > ./multiprog.conf
0-98 IMB-MPI1 -npmin 512 AllGather
99 amplxe-cl -c hpc-performance –r r_hpc_imb -- IMB-MPI1 -npmin 512 AllGather
100-511 IMB-MPI1 -npmin 512 AllGather
EOF

$ srun --multi-prog ./multiprog.conf
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Distributed Asynchronous Object 
Storage (DAOS) Support
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DAOS support – new in Intel MPI 2019

▪ Next generation file system support

▪ MPI IO primitives optimization

▪ I_MPI_EXTRA_FILESYSTEM_FORCE=daos

Intel MPI Library - Will be the first commercial MPI Library Supporting 
DAOS


