
Intel MPI Basics
HLRN User Workshop 3-6 Nov 2020

Klaus-Dieter Oertel

One Intel Software & Architecture (OISA) 2

Intel® MPI Library Overview

▪ Intel® MPI Library is a multifabric message-passing
library that implements the open-source MPICH
specification. Use the library to create, maintain, and
test advanced, complex applications that perform
better on HPC clusters based on Intel® processors.

▪ Develop applications that can run on multiple cluster
interconnects chosen by the user at run time.

▪ Quickly deliver maximum end-user performance
without having to change the software or operating
environment.

▪ Achieve the best latency, bandwidth, and scalability
through automatic tuning for the latest Intel®
platforms.

▪ Reduce the time to market by linking to one library
and deploying on the latest optimized fabrics.

Achieve optimized MPI performance

Omni-PathTCP/IP InfiniBand iWarp
Shared

Memory
…Other

Networks

Intel® MPI Library

Fabrics

Applications

CrashCFD Climate OCD BIO Other...

Develop applications for one fabric

Select interconnect fabric at runtime

Cluster

Intel® MPI Library – One MPI Library to develop,
maintain & test for multiple fabrics

3One Intel Software & Architecture (OISA)

Fabrics

One Intel Software & Architecture (OISA) 4

▪Next generation product goals:

▪ Low instruction count on a critical path

▪ Remove non scalable structures

▪ Better hybrid programming models support
(MPI+X)

▪ Better collective operations infrastructure

▪ Intel® MPI Library 2019 key features:

▪ Based on a new MPICH/CH4/OFI architecture

▪ New Mellanox, Amazon AWS and Google GCP
support

▪ New auto tuning capabilities

▪ Enhanced support for hybrid programming models

o New MPI_THREAD_MULTIPLE extension

o New asynchronous progress

▪ New SHM transport

▪ New collective operations

Next generation MPI - Intel® MPI Library 2019

One Intel Software & Architecture (OISA) 5

▪ Key Features

• Expose native hardware support to the MPI layer

• Reduction in number of instructions (1.5x lower instruction count on MPI levels)

▪ CH4 uses functions that can be inlined

▪ CH3 was based on function pointers

• Removal of non-scalable data structures

▪ Driven by Argonne National Laboratory

▪ Optimized data structures used to map ranks in a communicator to a global rank

• Enhanced path for MPI+X (threads) models

• OFI netmod

▪ Directly maps MPI constructs to OFI features as much as possible

MPICH/CH4/OFI Architecture Improvements

One Intel Software & Architecture (OISA) 6

Intel® MPI library 2018 SW stack

HW

MPI low level transport

MPI high level abstraction layer CH3

DAPL RC DAPL UD OFA TCP TMI

PSM2 PSM

Each transport layer required independent optimization

Infiniband Eth, IPoIB,
IPoOPA

OPA
iWarp,
RoCE

usNICAries TrueScale

One Intel Software & Architecture (OISA) 7

Intel® MPI library 2019+ SW stack

HW

OFI provider

MPI low level transport

MPI high level abstraction layer CH4

OFI

gni mlx verbs efa tcp psm2 psm

Infiniband
Eth, IPoIB,

IPoOPA
Intel OPA

iWarp,
RoCE

AWS EFAAries TrueScale

IMPI 2019 U8 is shipped with a prebuilt libfabric (mlx, psm2, verbs, and tcp providers)

OFI community

http://libfabric.org/

http://libfabric.org/

One Intel Software & Architecture (OISA) 8

Intel MPI at HLRN IV - Lise

▪ Intel MPI 2018 Update 5

• module load impi[/2018.5] default, (presumably) final 2018 version

▪ Intel MPI 2019 Update 9

• module load impi/2019.9 latest 2019 version

• module load impi/2019.5 outdated, deprecated

9One Intel Software & Architecture (OISA)

MPI Pinning
for Performance and Reproducibility

One Intel Software & Architecture (OISA) 10

Process Pinning with Intel MPI - 1/3

▪ The default pinning is suitable for most scenarios

▪ To override the default process layout, use the -ppn option:

$ mpirun –ppn <#processes per node> -n <#processes> …

▪ Intel® MPI Library respects the batch scheduler settings - to overwrite use:

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=0

▪ Per-node pinning can also be achieved using a “machinefile”

▪ Custom processor core pinning can be achieved by two environment variables

I_MPI_PIN_PROCESSOR_LIST - for pure MPI applications

I_MPI_PIN_DOMAIN - for Hybrid – MPI + Threading applications

One Intel Software & Architecture (OISA) 11

Process Pinning with Intel MPI - 2/3

▪ The ‘cpuinfo’ utility from Intel MPI can be used to observe the processor
topology

▪ Threads of Hybrid applications are not pinned by default

▪ Threads can migrate along the cores of a rank defined by
I_MPI_PIN_DOMAIN

▪ Therefore, threads should be pinned as well using e.g. OMP_PLACES or
KMP_AFFINITY

▪ Further information can be found in the “Process Pinning” section of the
Intel MPI Library reference manual

One Intel Software & Architecture (OISA) 12

Process Pinning with Intel MPI - 3/3

Default Intel Library MPI pinning Impact

I_MPI_PIN=on Pinning Enabled

I_MPI_PIN_MODE=pm Use Hydra for Pinning

I_MPI_PIN_RESPECT_CPUSET=on Respect process affinity mask

I_MPI_PIN_RESPECT_HCA=on Pin according to HCA socket

I_MPI_PIN_CELL=unit Pin on all logical cores

I_MPI_PIN_DOMAIN=auto:compact Pin size #lcores/#ranks : compact

I_MPI_PIN_ORDER=compact Order domains adjacent

One Intel Software & Architecture (OISA) 13

Intel® MPI Support of Hybrid Codes

▪ Define I_MPI_PIN_DOMAIN to split logical processors into non-overlapping subsets

▪ Mapping rule: 1 MPI process per 1 domain

▪ Threading models will “see” the mask of processors from the subset

For OpenMP: Pin threads
inside the domain with
KMP_AFFINITY

(or in the code)

One Intel Software & Architecture (OISA) 14

Intel® MPI Support of Hybrid Codes

▪ Intel® MPI is strong in mapping and pinning support for MPI processes

▪ Sophisticated defaults or user controlled:

• For pure MPI codes use I_MPI_PIN_PROCESSOR_LIST

• For hybrid codes (default, takes precedence over I_MPI_PIN_PROCESSOR_LIST):

I_MPI_PIN_DOMAIN =<size>[:<layout>]

<size> = omp Adjust to OMP_NUM_THREADS
auto #CPUs/#MPIprocs (default)
<n> Number

<layout> = platform According to BIOS numbering
compact Close to each other
scatter Far away from each other

Defines mapping and pinning for MPI processes, leaves room for threads on remaining cores!

14

One Intel Software & Architecture (OISA) 15

Intel® MPI Environment Support

▪ The execution command mpirun of Intel® MPI reads argument sets from the
command line:

• Sections between „:“ define an argument set
(alternatively a line in a configfile specifies a set)

• Host, number of nodes, but also environment can be set independently in each argument
set, e.g. for running in symmetric mode on the host and the coprocessor:
mpirun -env I_MPI_PIN_DOMAIN 4 –host myXEON ... \

: -env I_MPI_PIN_DOMAIN 16 –host myMIC

▪ Adapt the important environment variables to the architecture, e.g. for
OpenMP:

• OMP_NUM_THREADS

• KMP_HW_SUBSET, KMP_AFFINITY

15

One Intel Software & Architecture (OISA) 16

OpenMP Environment

▪ KMP_AFFINITY for binding of OpenMP threads in given mask, e.g. Intel MPI domain per rank

▪ KMP_AFFINITY=none (default on Xeon): No thread binding

▪ KMP_AFFINITY=scatter (default on Xeon Phi): Distributes the threads as evenly as possible
across the cores in round robin (using hyper/hardware threads for the 2nd sweep)

▪ KMP_AFFINITY=compact: Assigns thread <n>+1 to a free hyper/hardware thread as close as
possible to thread <n>, filling one core after the other

▪ KMP_AFFINITY=balanced: Form groups of consecutive threads by dividing total #threads by
#cores. Place groups in scatter manner on cores. Supported on Xeon Phi and Xeon (for the latter only
for single socket systems)

▪ KMP_AFFINITY=verbose,scatter to list the thread binding for scatter.

▪ Details and examples on https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-and-
reference-thread-affinity-interface-linux-and-windows

https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-and-reference-thread-affinity-interface-linux-and-windows

17One Intel Software & Architecture (OISA)

MPI Pinning Simulator

One Intel Software & Architecture (OISA) 18

The Intel MPI Pinning Simulator
https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html

• Starting with IMPI 2019U8

• Web- based interface -

• Platform configuration options

• load configuration by importing
cpuinfo (IMPI utility) output

• or manually define platform
configuration

• Provides IMPI environment
variable settings for desired
pinning

One Intel Software & Architecture (OISA) 19

Custom Mask (left) and 4 Socket Config (right)

20One Intel Software & Architecture (OISA)

MPI Pinning Control
at Run Time

One Intel Software & Architecture (OISA) 21

▪ Shows important features of a node: number of sockets, cores per
socket including hyper-threads and caches

▪ Part of the Intel® MPI Library distribution

▪ Reads its data from /proc/cpuinfo and prints it in a more appropriate
format

/proc/cpuinfo is over 2000 lines long for a 40 core HT dual socket Skylake

cpuinfo output for the same system is just about 100 lines and output is clearly
organized

▪Useful to guide process binding decisions

Processor Topology Using cpuinfo

One Intel Software & Architecture (OISA) 22

22

Output from cpuinfo

▪

▪ ===== Processor composition =====
▪ Processor name : Intel(R) Xeon(R) Gold 6148
▪ Packages(sockets) : 2
▪ Cores : 40
▪ Processors(CPUs) : 80
▪ Cores per package : 20
▪ Threads per core : 2

▪ ===== Processor identification =====
▪ Processor Thread Id. Core Id. Package Id.
▪ 0 0 0 0
▪ ...
▪ 79 1 28 1
▪

▪ ===== Placement on packages =====
▪ Package Id. Core Id. Processors
▪ 0 0,1,...,28 (0,40)(1,41)...
▪ 1 0,1,...,28 (20,60)(21,61)...

▪ ===== Cache sharing =====
▪ Cache Size Processors
▪ L1 32 KB (0,40)(1,41)...(20,60)(21,61)...
▪ L2 1 MB (0,40)(1,41)...(20,60)(21,61)...
▪ L3 27 MB (0,1,2,...) (20,21,22,...)

Socket 0
20 cores

40 cpus

Socket 1
20 cores

40 cpus

(0 ,40) (1 ,41)

(19 ,59)(18 ,58)

…

L3 cache

(20 ,60) (21 ,61)

(39 ,78)(38 ,77)

…

L3 cache

One Intel Software & Architecture (OISA) 23

Runtime Information with I_MPI_DEBUG

▪ The I_MPI_DEBUG variable controls the information printed to stdout

▪ Values from 1 to 6 provide increasing levels of verbosity

▪ A balance setting, I_MPI_DEBUG=4, prints information about:

• Process pinning

• Used network interfaces

• Intel MPI Library environment variables set by the user

One Intel Software & Architecture (OISA) 24

▪ $ export I_MPI_DEBUG=4

▪ $ mpirun –machinefile ./hosts.txt -n 8 ./mpi_hello

▪ [0] MPI startup(): Multi-threaded optimized library

▪ [0] MPID_nem_ofi_init(): used OFI provider: psm2

▪ ...

▪ [0] MPI startup(): shm and ofi data transfer modes

▪ ...

▪ [0] MPI startup(): Rank Pid Node name Pin cpu

▪ [0] MPI startup(): 0 121023 node0 {0,1,2,3,4,5,6,7,8,9,40,41,42,43,44,45,46,47,48,49}

▪ [0] MPI startup(): 1 121024 node0 {10,11,12,13,14,15,16,17,18,19,50,51,52,53,54,55,56,57,58,59}

▪ [0] MPI startup(): 2 121025 node0 {20,21,22,23,24,25,26,27,28,29,60,61,62,63,64,65,66,67,68,69}

▪ [0] MPI startup(): 3 121026 node0 {30,31,32,33,34,35,36,37,38,39,70,71,72,73,74,75,76,77,78,79}

▪ [0] MPI startup(): 4 246334 node1 {0,1,2,3,4,5,6,7,8,9,40,41,42,43,44,45,46,47,48,49}

▪ [0] MPI startup(): 5 246335 node1 {10,11,12,13,14,15,16,17,18,19,50,51,52,53,54,55,56,57,58,59}

▪ [0] MPI startup(): 6 246336 node1 {20,21,22,23,24,25,26,27,28,29,60,61,62,63,64,65,66,67,68,69}

▪ [0] MPI startup(): 7 246337 node1 {30,31,32,33,34,35,36,37,38,39,70,71,72,73,74,75,76,77,78,79}

▪ Hi from MPI task 0
▪ ...

Default Binding

Fabric provider

Active transfer
modes

Equal distribution of cores among MPI ranks

One Intel Software & Architecture (OISA) 25

▪ $ export I_MPI_DEBUG=4

▪ $ export I_MPI_PIN_PROCESSOR_LIST=0,1,20,21

▪ $ mpirun –machinefile ./hosts.txt -n 8 ./mpi_hello

▪ [0] MPI startup(): Multi-threaded optimized library

▪ [0] MPID_nem_ofi_init(): used OFI provider: psm2

▪ ...

▪ [0] MPI startup(): shm and ofi data transfer modes

▪ ...

▪ [0] MPI startup(): Rank Pid Node name Pin cpu

▪ [0] MPI startup(): 0 121023 node0 {0}

▪ [0] MPI startup(): 1 121024 node0 {1}

▪ [0] MPI startup(): 2 121025 node0 {20}

▪ [0] MPI startup(): 3 121026 node0 {21}

▪ [0] MPI startup(): 4 246334 node1 {0}

▪ [0] MPI startup(): 5 246335 node1 {1}

▪ [0] MPI startup(): 6 246336 node1 {20}

▪ [0] MPI startup(): 7 246337 node1 {21}

▪ Hi from MPI task 0
▪ ...

Using I_MPI_PIN_PROCESSOR_LIST

Fabric provider (no changes)

Active transfer modes (no changes)

Processes bound to specified CPUs, not floating

One Intel Software & Architecture (OISA) 26

▪ $ export I_MPI_DEBUG=4

▪ $ export I_MPI_PIN_DOMAIN=omp

▪ $ export OMP_NUM_THREADS=10

▪ $ mpirun –machinefile ./hosts.txt -n 8 ./mpi_hello

▪ [0] MPI startup(): Multi-threaded optimized library

▪ [0] MPID_nem_ofi_init(): used OFI provider: psm2

▪ ...

▪ [0] MPI startup(): shm and ofi data transfer modes

▪ ...

▪ [0] MPI startup(): Rank Pid Node name Pin cpu

▪ [0] MPI startup(): 0 121023 node0 {0,1,2,3,4,40,41,42,43,44}

▪ [0] MPI startup(): 1 121024 node0 {5,6,7,8,9,45,46,47,48,49}

▪ [0] MPI startup(): 2 121025 node0 {10,11,12,13,14,50,51,52,53,54}

▪ [0] MPI startup(): 3 121026 node0 {15,16,17,18,19,55,56,57,58,59}

▪ [0] MPI startup(): 4 246334 node1 {0,1,2,3,4,40,41,42,43,44}

▪ [0] MPI startup(): 5 246335 node1 {5,6,7,8,9,45,46,47,48,49}

▪ [0] MPI startup(): 6 246336 node1 {10,11,12,13,14,50,51,52,53,54}

▪ [0] MPI startup(): 7 246337 node1 {15,16,17,18,19,55,56,57,58,59}

▪ Hi from MPI task 0 OMP thread 0
▪ ...

Using I_MPI_PIN_DOMAIN

Set binding to OMP range

Each MPI task floats on
OMP_NUM_THREADS

logical processors

Careful in HT systems!

One Intel Software & Architecture (OISA) 27

Summary

▪ Process pinning is the mapping of MPI ranks to hardware resources like
cores, sockets, caches etc…

▪ Default pinning strategy of Intel MPI Library may depend on version, but it
generally produces a near-optimal task to processor map

▪ Performance reproducibility depends strongly on process binding

▪ To increase performance you should control the pinning, especially for
hybrid programs (pinning domains)

▪ Find out where to bind using cpuinfo

▪ Find out where things were bound using I_MPI_DEBUG

28One Intel Software & Architecture (OISA)

SLURM Integration

One Intel Software & Architecture (OISA) 29

SLURM Process Manager Integration

mpirun

hydra

Srun bootstrap

PMI_proxy

MPI Ranks

srun

Srun bootstrap

PMI_proxy

MPI Ranks

One Intel Software & Architecture (OISA) 30

Intranode Pinning

IMPI SLURM

I_MPI_HYDRA_BOOTSTRAP=slurm

I_MPI_PIN_RESPECT_CPUSET=0 I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so.0

mpirun srun

ppn etc. --cpus-per-task / --ntasks-per-node / etc.

One Intel Software & Architecture (OISA) 31

Intel MPI and SLURM
Intel Confidential31

▪ Two approaches for starting (hybrid) MPI codes:

▪ srun: Process mapping and binding under control of SLURM

o Always use --cpu-bind=v[erbose] to check mapping/binding

▪ mpirun: Process mapping and binding under control of Intel MPI

o Only use --nodes from SLURM (no --ntasks/--ntasks-per-node/--cpus-per-task!)

mpirun … -n <#ranks> -ppn <#ranks_per_node> <executable>

Use environment variables I_MPI_PIN_DOMAIN (hybrid MPI/threading) or I_MPI_PIN_PROCESSOR_LIST (pure MPI) for mapping
and binding in nodes

o Using --nodes and --ntasks (or --ntasks-per-node) from SLURM
➔assumption: #tasks/#nodes ranks per node are required by the job

mpirun … <executable>

o Always use export I_MPI_DEBUG=4 (or higher) to check mapping/binding

▪ Binding of OpenMP threads has to be controlled/checked: export
KMP_AFFINITY=verbose

One Intel Software & Architecture (OISA) 32

SLURM Process Manager Integration

IMPI Version Configuration

<= 2019 U5 The IMPI process launcher (rank) is checking if the
I_MPI_PMI_LIBRARY was exposed or not (both srun & mpirun
will work)

>= 2019U6 Users must choose either srun or mpirun

>= 2019U7 PMI1 & PMI2 are supported. The IMPI selected PMI depends on
the target of I_MPI_PMI_LIBRARY and has to be aligned with
the SLURM configuration or aligned with the srun user
parameter e.g. –mpi=pmi2

>= 2019U8 Dynamic spawning support with PMI2 under SLURM

One Intel Software & Architecture (OISA) 33

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. See backup for configuration details. For more complete information about performance and benchmark results, visit
www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or
component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

34

