
Intel Compiler
Overview

HLRN User Workshop 3-6 Nov 2020

Klaus-Dieter Oertel

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Key Updates

• New Underlying Back End Compilation Technology based on LLVM

• LLVM technology available in oneAPI Betas for DPC++, C++ and Fortran

• IL0/”Classic” Back End Compilation Technology Continues to be Available

• OpenMP Offload supported only on LLVM versions

• F2018 Full coverage in IL0 (oneAPI HPC Toolkit)

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Compilers – DPC++, C/C++ & Fortran

Intel Compiler
(Technology)

Compiler driver Target
OpenMP
Offload*

Current Status

C/C++ (IL0) icc CPU No Production

C/C++ (LLVM) icx / icc -qnextgen CPU, GPU* Yes Production/Beta

DPC++ (LLVM) dpcpp
CPU, GPU,

FPGA
NA Beta

Fortran (IL0) ifort CPU No Production

Fortran (LLVM) ifx CPU, GPU* Yes Beta

Cross Compiler Binary Compatible and Linkable

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

5

What’s New for Intel compilers 19.1?
“classic” icc/ifort

Advance Support for Intel® Architecture – Use Intel compiler to generate optimized code for Intel
Atom® processor through Intel® Xeon® Scalable processor families

Achieve Superior Parallel Performance – Vectorize & thread your code (using OpenMP*) to take full
advantage of the latest SIMD-enabled hardware, including Intel® Advanced Vector Extensions 512
(Intel® AVX-512)

What’s New in Fortran

Substantial Fortran 2018 support

▪ Enjoy enhanced C-interoperability features for effective mixed language
development

▪ Use advanced coarray features to parallelize your modern Fortran code

Initial OpenMP* 5.0, and substantial OpenMP* 4.5
support

▪ Customize your reduction operations by user-defined reductions

What’s New in C++

Initial C++20, and full C++ 17 enabled

▪ Enjoy advanced lambda and constant expression support

▪ Standards-driven parallelization for C++ developers

Initial OpenMP* 5.0, and full OpenMP* 4.5
support

▪ Modernize your code by using the latest parallelization
specifications

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Intel® C++ Compiler Boosts Application Performance on Linux*

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. Performance results are based on testing as of
Aug. 26, 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized. for
performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information about performance and benchmark results, visit www.intel.com/benchmarks.
Configuration: Testing by Intel as of Aug. 26, 2019. Linux hardware: Intel® Xeon® Platinum 8180 CPU @ 2.50GHz, 384 GB RAM, HyperThreading is on. Software: Intel® C++ Compiler 19.1, GCC 9.1.0. Clang/LLVM 9.0. Linux OS: Red Hat*
Enterprise Linux Server release 7.4 (Maipo), 3.10.0-693.el7.x86_64. SPEC* Benchmark (www.spec.org). SPECint®_rate_base_2017 compiler switches: qkmalloc was used for Intel C++ Compiler 19.1 SPECint rate test, jemalloc 5.0.1 was used
for GCC and Clang/LLVM SPECint rate test. Intel® C Compiler / Intel C++ Compiler 19.1: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=4. GCC 9.1.0 -march=skylake-avx512 -mfpmath=sse -Ofast -funroll-loops -flto. Clang 9.0:
-march=skylake-avx512 -mfpmath=sse -Ofast -funroll-loops –flto. SPECfp®_rate_base_2017 compiler switches: jemalloc 5.0.1 was used for Intel C++ Compiler 19.1, GCC and Clang/LLVM SPECfp rate test. Intel C/C++ compiler 19.1: -xCORE-
AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4. GCC 9.1.0: -march=skylake-avx512 -mfpmath=sse -Ofast -fno-associative-math -funroll-loops -flto. Clang 9.0: -march=skylake-avx512 -mfpmath=sse -
Ofast -funroll-loops –flto. SPECint®_speed_base_2017 compiler switches: Intel C Compiler / Intel C++ Compiler 19.1: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=4 -qopenmp. GCC 9.1.0: -march=skylake-avx512 -
mfpmath=sse -Ofast -funroll-loops -flto -fopenmp. Clang 9.0: -march=skylake-avx512 -mfpmath=sse -Ofast -funroll-loops -flto -fopenmp=libomp. SPECfp®_speed_base_2017 compiler switches: Intel C Compiler / Intel C++ Compiler 19.1: -
xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopenmp. GCC 9.1.0: -march=skylake-avx512 -mfpmath=sse -Ofast -fno-associative-math -funroll-loops -flto -fopenmp. Clang 9.0: -march=skylake-avx512 -mfpmath=sse -
Ofast -funroll-loops -flto -fopenmp=libomp. compiler switches: jemalloc 5.0.1 was used for Intel C++ Compiler 19.0 update 4, GCC and Clang/LLVM SPECfp rate test. Intel C/C++ compiler 19.1:-.

1.23X

Estimated geometric mean of SPEC* CPU2017 Estimated
SPECint®_rate_base2017
Floating Point RATE BASE C/C++ benchmarks

Floating Point

Estimated geometric mean of SPEC* CPU2017 Estimated
SPECint®_speed_base2017
Floating Point SPEED BASE C/C++ benchmarks

Relative geomean performance (FP Rate Base and FP Speed Base; higher is better)

1.34

1 1

0.00

0.50

1.00

1.50

Intel C++

19.1

GCC 9.1 LLVM 9.0

SpecInt Rate
1.23

1.02 1.00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Intel C++

19.1

GCC 9.1 LLVM 9.0

SpecInt Speed

1.24

1 1.02

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Intel C++

19.1

GCC 9.1 LLVM 9.0

SpecFP Speed

1.19

1.00 1.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Intel C++

19.1

GCC 9.1 LLVM 9.0

SpecFP Rate

Integer Floating Point Integer

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Common optimization options
Linux*

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step build) -prof-gen

-prof-use

Optimize for speed across the entire program (“prototype switch”)

fast options definitions changes over time!

-fast
same as:
-ipo –O3 -no-prec-div –static –fp-model fast=2 -xHost)

OpenMP support -qopenmp

Automatic parallelization -parallel

https://tinyurl.com/icc-user-guide

https://tinyurl.com/icc-user-guide

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

High-Level Optimizations
Basic Optimizations with icc -O…

-O0 no optimization; sets -g for debugging

-O1 scalar optimizations
excludes optimizations tending to increase code size

-O2 default for icc/icpc (except with -g)
includes auto-vectorization; some loop transformations, e.g. unrolling, loop interchange;
inlining within source file;
start with this (after initial debugging at -O0)

-O3 more aggressive loop optimizations
including cache blocking, loop fusion, prefetching, …
suited to applications with loops that do many floating-point calculations or process large data sets

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

InterProcedural Optimizations (IPO)
Multi-pass Optimization

icc -ipo

Analysis and optimization across function and/or source file boundaries, e.g.

▪ Function inlining; constant propagation; dependency analysis; data & code layout; etc.

2-step process:

▪ Compile phase – objects contain intermediate representation

▪ “Link” phase – compile and optimize over all such objects

▪ Seamless: linker automatically detects objects built with -ipo and their compile options

▪ May increase build-time and binary size

▪ But build can be parallelized with -ipo=n

▪ Entire program need not be built with IPO, just hot modules

Particularly effective for applications with many smaller functions

Get report on inlined functions with -qopt-report-phase=ipo

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

InterProcedural Optimizations
Extends optimizations across file boundaries

-ip Only between modules of one source file

-ipo Modules of multiple files/whole application

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.c

file2.c

file3.c

file4.c

Without IPO

Compile & Optimize

file1.c

file4.c file2.c

file3.c

With IPO

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Profile-Guided Optimizations (PGO)
Static analysis leaves many questions open for the optimizer like:

▪ How often is x > y
▪ What is the size of count
▪ Which code is touched how often

Use execution-time feedback to guide (final) optimization
Enhancements with PGO:

– More accurate branch prediction

– Basic block movement to improve instruction cache behavior

– Better decision of functions to inline (help IPO)

– Can optimize function ordering

– Switch-statement optimization

– Better vectorization decisions

if (x > y)

do_this();

else

do that();

for(i=0; i<count; ++i)

do_work();

Compile sources
with the prof-gen

option

Run the
Instrumented

Executable
(one or more times)

Compile with
prof-use option

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

PGO Usage: Three-Step Process

Compile + link to add instrumentation
icc –prof-gen prog.c –o prog

Execute instrumented program
./prog (on a typical dataset)

Compile + link using feedback
icc –prof-use prog.c –o prog

Dynamic profile:
12345678.dyn

Instrumented
executable:
prog

Merged .dyn files:
pgopti.dpi

Step 1

Step 2

Step 3

Optimized executable:
prog

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Math Libraries

icc comes with Intel’s optimized math libraries

▪ libimf (scalar) and libsvml (scalar & vector)

▪ Faster than GNU* libm

▪ Driver links libimf automatically, ahead of libm

▪ Additional functions (replace math.h by mathimf.h)

Don’t link to libm explicitly! -lm

▪ May give you the slower libm functions instead

▪ Though the Intel driver may try to prevent this

▪ gcc needs -lm, so it is often found in old makefiles

© 2020 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names
and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Evolution of SIMD for Intel ® Processors

1

MMX MMX MMX MMX MMX MMX MMX MMX

SSE SSE SSE SSE SSE SSE SSE SSE

SSE2 SSE2 SSE2 SSE2 SSE2 SSE2 SSE2 SSE2

SSE3 SSE3 SSE3 SSE3 SSE3 SSE3 SSE3

Prescott
2004

SSSE3 SSSE3 SSSE3 SSSE3 SSSE3 SSSE3

SSE4.1 SSE4.1 SSE4.1 SSE4.1 SSE4.1

SSE4.2 SSE4.2 SSE4.2 SSE4.2

AVX AVX AVX

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

AVX

Merom
2006

Willamette
2000

Penryn
2007

AVX2 AVX2 AVX2

AVX-512 F/CD AVX-512 F/CD

AVX-512 ER/PF
AVX-512

VL/BW/DQ

Nehalem
2007

Sandy Bridge
2011

Haswell
2013

Knights Landing
2015

Skylake
2017

128b
SIMD

256b
SIMD

512b
SIMD

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

AVX

AVX2

AVX-512 F/CD

AVX-512
VL/BW/DQ/VNN

I

Cascade Lake
2019

Intel® Xeon®/Xeon® Scalable Processors

https://software.intel.com/en-us/articles/optimization-notice#opt-en

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

SIMD Types for Intel® Architecture

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

255

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

X16

Y16

X16◦Y16

511

AVX
Vector size: 256 bit
Data types:
• 8, 16, 32, 64 bit integer
• 32 and 64 bit float
VL: 4, 8, 16, 32

Intel® AVX-512
Vector size: 512 bit
Data types:
• 8, 16, 32, 64 bit integer
• 32 and 64 bit float
VL: 8, 16, 32, 64

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

❑ Scalar mode
– one instruction produces

one result

– E.g. vaddss, (vaddsd)

❑ Vector (SIMD) mode
– one instruction can produce

multiple results

– E.g. vaddps, (vaddpd)

+

X

Y

X + Y

+

X

Y

X + Y

= =

x7+y7 x6+y6 x5+y5 x4+y4 x3+y3 x2+y2 x1+y1 x0+y0

y7 y6 y5 y4 y3 y2 y1 y0

x7 x6 x5 x4 x3 x2 x1 x0

8 doubles for AVX-512

for (i=0; i<n; i++) z[i] = x[i] + y[i];

SIMD: Single Instruction, Multiple Data

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Many ways to vectorize

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Basic Vectorization Switches I

-x<code>

▪ Might enable Intel processor specific optimizations

▪ Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

<code> indicates a feature set that compiler may target (including instruction sets and
optimizations)

Microarchitecture code names: BROADWELL, HASWELL, IVYBRIDGE, KNL, KNM,
SANDYBRIDGE, SILVERMONT, SKYLAKE, SKYLAKE-AVX512

SIMD extensions: CORE-AVX512, CORE-AVX2, CORE-AVX-I, AVX, SSE4.2, etc.

Example: icc -xCORE-AVX2 test.c

ifort –xSKYLAKE test.f90

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Basic Vectorization Switches II
-ax<code>

▪ Multiple code paths: baseline and optimized/processor-specific

▪ Optimized code paths for Intel processors defined by <code>

▪ Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

▪ Baseline code path defaults to –msse2 (/arch:sse2)

▪ The baseline code path can be modified by –m<code> or –x<code>

▪ Example: icc -axCORE-AVX512 -xAVX test.c

icc -axCORE-AVX2,CORE-AVX512 test.c

-m<code>

▪ No check and no specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD feature

▪ Missing check can cause application to fail in case extension not available

-xHost

© 2020 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names
and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

1

Tuning for Skylake/Cascade Lake - Compiler options

▪ Skylake/Cascade Lake and Knights Landing processors have support for
Intel® AVX-512 instructions. There are three ISA options in the Intel®
Compiler:

▪ -xCORE-AVX512 : Targets Skylake/Cascade Lake, contains instructions not supported by KNL

▪ -xCOMMON-AVX512 : Targets all Skylake/Cascade Lake and Knights Landing

▪ -xMIC-AVX512 : Targets Knights Landing, includes instructions not supported by Skylake

▪ Intel® Compiler is conservative in its use of ZMM (512bit) registers
so to enable their use with Skylake/Cascade Lake the additional flag
-qopt-zmm-usage=high must be set.

https://software.intel.com/en-us/articles/optimization-notice#opt-en

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Compiler Reports – Optimization Report

▪ -qopt-report[=n]: tells the compiler to generate an optimization report
▪ n: (Optional) Indicates the level of detail in the report. You can specify values 0 through 5. If you

specify zero, no report is generated. For levels n=1 through n=5, each level includes all the
information of the previous level, as well as potentially some additional information. Level 5
produces the greatest level of detail. If you do not specify n, the default is level 2, which
produces a medium level of detail.

▪ -qopt-report-phase[=list]: specifies one or more optimizer phases for which
optimization reports are generated.
▪ loop: the phase for loop nest optimization

▪ vec: the phase for vectorization

▪ par: the phase for auto-parallelization

▪ all: all optimizer phases

▪ -qopt-report-filter=string: specified the indicated parts of your application,
and generate optimization reports for those parts of your application.

© 2020 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names
and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

1

Example of Optimization report 1/3
$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
Multiversioned v1

remark #25231: Loop multiversioned for Data Dependence
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15145: vectorization support: unroll factor set to 2
remark #15164: vectorization support: number of FP up converts: single to double precision 1
remark #15165: vectorization support: number of FP down converts: double to single precision 1
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
…. (loop cost summary) ….
remark #25018: Estimate of max trip count of loop=32

LOOP END

LOOP BEGIN at foo.c(4,3)
Multiversioned v2

remark #15006: loop was not vectorized: non-vectorizable loop instance from multiversioning
LOOP END
===

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sin(theta[i]+3.1415927);
}

https://software.intel.com/en-us/articles/optimization-notice#opt-en

© 2020 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names
and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

2

Example of Optimization report 2/3
$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15145: vectorization support: unroll factor set to 2
remark #15164: vectorization support: number of FP up converts: single to double precision 1
remark #15165: vectorization support: number of FP down converts: double to single precision 1
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 114
remark #36093: vector loop cost: 55.750
remark #36094: estimated potential speedup: 2.040
remark #36095: lightweight vector operations: 10
remark #36096: medium-overhead vector operations: 1
remark #36098: vectorized math library calls: 1
remark #36103: type converts: 2
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=32

LOOP END

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sin(theta[i]+3.1415927);
}

https://software.intel.com/en-us/articles/optimization-notice#opt-en

© 2020 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names
and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

3

Example of Optimization report 3/3
$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias foo.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access

remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 111
remark #36093: vector loop cost: 28.000
remark #36094: estimated potential speedup: 3.950
remark #36095: lightweight vector operations: 9
remark #36098: vectorized math library calls: 1
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=32

LOOP END

#include <math.h>
void foo (float * theta, float * sth) {

int i;
for (i = 0; i < 128; i++)

sth[i] = sinf(theta[i]+3.1415927f);
}

https://software.intel.com/en-us/articles/optimization-notice#opt-en

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Auto-Parallelization

Based on OpenMP* runtime

Compiler automatically translates loops into equivalent multithreaded code with using this
option:

-parallel

The auto-parallelizer detects simply structured loops that may be safely executed in parallel,
and automatically generates multi-threaded code for these loops.

The auto-parallelizer report can provide information about program sections that were
parallelized by the compiler. Compiler switch:

-qopt-report-phase=par

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

The -fp-model switch
-fp-model

▪ fast [=1] allows value-unsafe optimizations (default)
▪ fast=2 allows a few additional approximations
▪ precise value-safe optimizations only
▪ source | double | extended imply “precise” unless overridden

see “FP Expression Evaluation” for more detail
▪ except enable floating-point exception semantics
▪ strict precise + except + disable fma +

don’t assume default floating-point environment
▪ consistent most reproducible results between different

processor types and optimization options

-fp-model precise -fp-model source
▪ recommended for best reproducibility

▪ also for ANSI/ IEEE standards compliance, C++ & Fortran

▪ “source” is default with “precise” on Intel 64

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Looking for best compiler options?

It depends!
• workload, hw, OS, compiler version, memory allocation, etc.
• take a look on benchmark results and options for reference:

SPECint®_rate_base_2017
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=4

SPECfp®_rate_base_2017
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4

SPECint®_speed_base_2017
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=4 -qopenmp

SPECfp®_speed_base_2017
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopenmp

One Intel Software & Architecture (OISA) 1

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. See backup for configuration details. For more complete information about performance and benchmark results, visit
www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or
component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

2

