

# INTEL® ADVISOR Vectorization Optimization

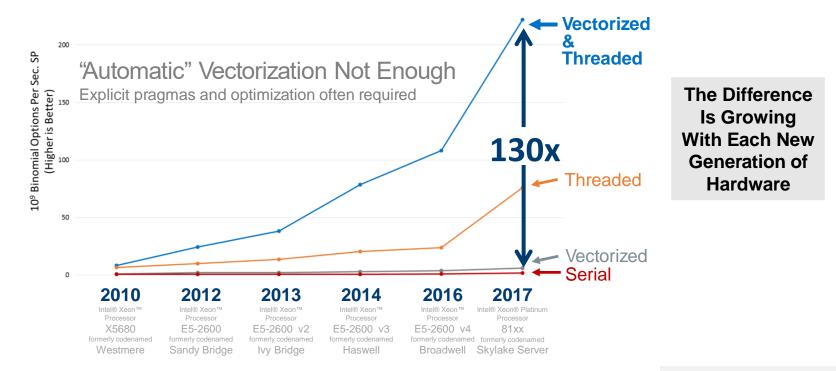
Klaus-Dieter Oertel Intel IAGS HLRN User Workshop, 3-6 Nov 2020

### Changing Hardware Impacts Software More Cores → More Threads → Wider Vectors

|            |        |                              |                |                |         |               |               |               | intel'Xeon'<br>Plainum<br>Processor | Xeon Phi <sup>w</sup> Processor |
|------------|--------|------------------------------|----------------|----------------|---------|---------------|---------------|---------------|-------------------------------------|---------------------------------|
|            |        | Intel <sup>®</sup> Xeon Phi™ |                |                |         |               |               |               |                                     |                                 |
|            | 64-bit | 5100<br>series               | 5500<br>series | 5600<br>series | E5-2600 | E5-2600<br>V2 | E5-2600<br>V3 | E5-2600<br>V4 | Platinum<br>8180                    | processor<br>Knights Landing    |
| Core(s)    | 1      | 2                            | 4              | 6              | 8       | 12            | 18            | 22            | 28                                  | 72                              |
| Threads    | 2      | 2                            | 8              | 12             | 16      | 24            | 36            | 44            | 56                                  | 288                             |
| SIMD Width | 128    | 128                          | 128            | 128            | 256     | 256           | 256           | 256           | 512                                 | 512                             |

#### High performance software must be both

- Parallel (multi-thread, multi-process)
- Vectorized


\*Product specification for launched and shipped products available on ark.intel.com.

#### Optimization Notice



## Vectorize & Thread or Performance Dies

Threaded + Vectorized can be much faster than either one alone



Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performance</a> that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performance</a> that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performance</a> that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performance</a> that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performance</a> that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performance</a> that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performance</a> that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performance</a> that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performance</a> that product when combined with other products. For more information go to <a href="https://www.intel.com/performance">https://www.intel.com/performanc

Configurations for 2007-2016 Benchmarks at the end of this presentation

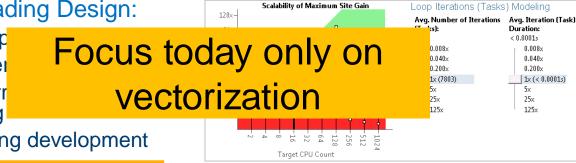
Optimization Notice

# **ADVISOR OVERVIEW**

## Faster Code Faster with Data Driven Design

Intel® Advisor – Vectorization Optimization and Thread Prototyping

#### Faster Vectorization Optimization:


- Vectorize where it will pay off most
- Quickly ID what is blocking vectorization
- Tips for effective vectorization
- Safely force compiler vectorization
- Optimize memory stride

#### Breakthrough for Threading Design:

- Quickly prototype multip
- Project scaling on larger
- Find synchronization err implementing threading
- Design without disrupting development

#### Less Effort, Less Risk and More Impact

| 📕 Where should I add 🕯            | ve | ctorization and/c           | or threa | ding pa    | aralleli | sm? 🗖           | ١r                    | ntel Ac  | lvisor XE 2         | 016 |
|-----------------------------------|----|-----------------------------|----------|------------|----------|-----------------|-----------------------|----------|---------------------|-----|
| 🌪 Summary 🛭 📽 Survey Report       |    | 🍅 Refinement Reports        | 🍐 Anno   | tation Rep | oort 🦞   | Suitability Rep | oort                  |          |                     |     |
| Elapsed time: 54.44s Vectorize    | ed | Not Vectorized 0            | FIL      | TER: All I | Modules  | ✓ AII           | Sources 🗸 🗸           |          |                     | ୍   |
| 5 1° 0 10° 11 1                   |    | @ Vector Issues             | Self     | Total      | Trip 🔊   |                 | SAU 10 52 1 1 1 1     | Vectoriz | ed Loops            |     |
| Function Call Sites and Loop      | •  | W vector issues             | Time▼    | Time       | Counts   | Loop Type       | Why No Vectorization? | Vecto    | Efficiency          |     |
| i> 🖱 [loop at stl_algo.h:4740 i 🗌 |    |                             | 0.170s l | 0.170s I   |          | Scalar          | non-vectorizable I    |          |                     |     |
| 🖃 ⊍ [loop at loopstl.cpp:2449     |    | 💡 🛯 Ineffective peeled      | 0.170s l | 0.170s l   | 12; 4    | <u>Collapse</u> | <u>Collapse</u>       | AVX      | ~100 <mark>%</mark> |     |
| i> 🖲 [loop at loopstl.cpp:2       |    |                             | 0.150s l | 0.150s l   | 12       | Vectorized (B   |                       | AVX      |                     |     |
| i> 🝊 [loop at loopstl.cpp:2 🗌     |    |                             | 0.020s I | 0.020s I   | 4        | Remainder       |                       |          |                     |     |
| i> 🖱 [loop at loopstl.cpp:7900, 🗌 |    |                             | 0.170s l | 0.170s l   | 500      | Scalar          | vectorization possi   |          |                     |     |
| 🗄 🛄 [loop at loopstl.cpp:35       |    | 💡 <u>1</u> High vector regi | 0.160s   | 0.160s     | 12       | Expand          | Expand                | AVX      | ~6 <mark>9%</mark>  |     |
| <                                 |    |                             |          |            |          |                 |                       |          |                     |     |



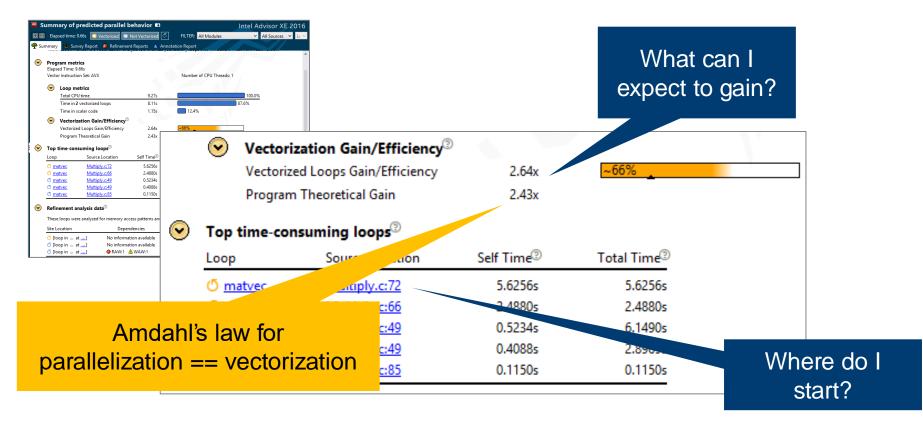
Part of Intel<sup>®</sup> Parallel Studio for Windows\* and Linux\*

# Intel<sup>®</sup> Advisor – Vectorization Advisor

Get breakthrough vectorization performance

#### Faster Vectorization Optimization:

- Vectorize where it will pay off most
- Quickly ID what is blocking vectorization
- Tips for effective vectorization
- Safely force compiler vectorization
- Optimize memory stride


#### The data and guidance you need:

- Compiler diagnostics + Performance Data + SIMD efficiency
- Detect problems & recommend fixes
- Loop-Carried Dependency Analysis
- Memory Access Patterns Analysis

| FILT     | <ul> <li>Elapsed time: 70.29s X</li> <li>Vectorized O Not Vectorized 5</li> <li>FILTER: All Modules All Sources Loops And Functions All Threads </li> <li>Summary Survey &amp; Roofline Settimement Reports</li> </ul> |   |                  |             |               |              |                 |       |                          |                     | Optimize for<br>AVX-512 with |       |      |             |        |            |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|-------------|---------------|--------------|-----------------|-------|--------------------------|---------------------|------------------------------|-------|------|-------------|--------|------------|
| ROOFLINE | + - Function Call Sites and Loops                                                                                                                                                                                      | ۵ | Vector<br>Issues | Self Time 🕶 | Total<br>Time | Туре         | FLOPS<br>GFLOPS | 1     | Why No<br>Vectorization? | Vectorize<br>Vector | d Loops<br>Efficiency        | Gain  |      | mp          |        | or without |
| IN IN    | 🛨 🖱 [loop in S252 at loops90.f:1172]                                                                                                                                                                                   | - | 💡 1 Possible     | 3.129s 7.0% | 3.129         | Vectorized   | 0.191           | 0.115 | 🖬 1 vectorizat           | AVX2                | 17%                          | 1.36x | 4; 8 | 99; 6; 1; 1 |        | access to  |
|          | [loop in S2101 at loops90.f:1749]                                                                                                                                                                                      | - | 2 Possible       | 2.765s 6.2% | 2.765s        | Scalar       | 0.1421          | 0.067 | 🖬 vectorizatio           |                     |                              |       |      | 12          |        | AVX-512    |
|          | 🛨 🖱 [loop in s442_\$omp\$parallel_for                                                                                                                                                                                  |   | 💡 1 Ineffecti    | 1.492s 3.4% | 1.492s        | Vectorized+  | 0.5861          | 0.165 |                          | AVX2                | 14%                          | 1.09x | 8    | 30; 1; 3    |        | -          |
|          |                                                                                                                                                                                                                        |   |                  | 1.108s 2.5% | 1.108s        | Vector Funct | 3.9111          | 0.156 |                          | AVX2                |                              |       |      |             |        | hardware   |
|          | [loop in S353 at loops90.f:2381]                                                                                                                                                                                       |   | 9 1 Possible     | 0.989s 2.2% | 0.989s        | Vectorized ( | 2.0231          | 0.134 |                          | AVX2                | 27%                          | 2.16x | 8    | 6; 4; 1     | $\sim$ |            |
|          | < >                                                                                                                                                                                                                    | < |                  |             |               |              |                 |       |                          |                     |                              |       |      |             | >      |            |

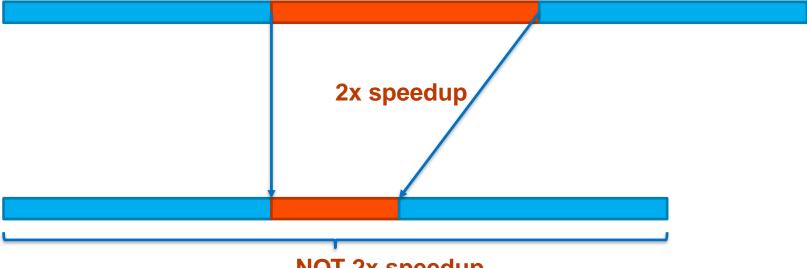
#### Part of Intel® Parallel Studio XE

## Summary View: Plan Your Next Steps



## Amdahl's law

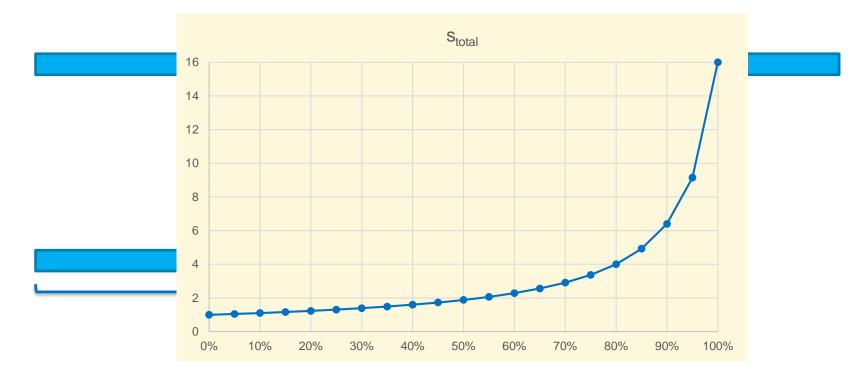
$$S_{total} = \frac{100\%}{(100\% - p) + \frac{p}{s_p}}$$


S = speedup (in parallelized part or total)

P = proportion of execution time that benefits from parallelization

Example: P=80%,  $s_p=16$  [AVX-512] =>  $S_{total}=4$ 




## Amdahl's law



NOT 2x speedup



## Amdahl's law





# The Right Data At Your Fingertips

#### Get all the data you need for high impact vectorization

| Filter by which loops<br>are vectorized!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |   |                                 |             | o Cou      | nts    |                      | What prevents<br>vectorization? |          |                      |          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|---------------------------------|-------------|------------|--------|----------------------|---------------------------------|----------|----------------------|----------|--|
| 😤 Summary 🕊 Survey Ra, 🕇 🍅 Refinement Reports 💧 Annotation Report 🖞 Suitability, ort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |   |                                 |             |            |        |                      |                                 |          |                      |          |  |
| Elapsed time: 54,44s Vectorized Not Vectorized 🖉 FILTER: All Modules 🗸 All Sources 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |   |                                 |             |            |        |                      |                                 |          |                      | ٩,       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |   |                                 |             | T-+-1 T    | Trip 🔊 |                      | Million Mar Marchan Marchine 2  | Vectoriz | ^                    |          |  |
| Function Call Sites and Loops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ۵ | P Vector Issues                 | Self Time 🕶 | Total Time | Counts | Loop Type            | Why No Vectorization?           | Vecto    | Efficiency           | Vector L |  |
| ₃> 🖱 [loop at stl_algo.h:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4740 in std::tr  |   |                                 | 0.170s l    | 0.170s l   |        | Scalar               | non-vectorizable loop ins       |          |                      |          |  |
| 🖃 🛄 [loop at loopstl.cpp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o:2449 in s234_] |   | 💡 👱 Ineffective peeled/rem      | 0.170s l    | 0.170s l   | 12; 4  | <u>Collapse</u>      | <u>Collapse</u>                 | AVX      | ~100 <mark>%</mark>  | 4        |  |
| i>🛄 [loo] at loopstl.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cpp:2449 in s    |   |                                 | 0.150s l    | 0.150s l   | 12     | Vectorized (Body)    |                                 | AVX      |                      | 4        |  |
| i> 🖱 [lor at loopstl.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cpp:2449 in s    |   |                                 | 0.020s I    | 0.020s I   | 4      | Remainder            |                                 |          |                      |          |  |
| ±> <sup>™</sup> [loop loopstl.cpp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o:7900 in vas_]  |   |                                 | 0.170s l    | 0.170s l   | 500    | Scalar               | vectorization possible but      |          |                      | 4        |  |
| 🗄 🖲 [loo 🔤 loopsti.cp]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p:3509 in s2     |   | 💡 <u>1</u> High vector register | 0.160s      | 0.160s     | 12     | Expand               | Expand                          | AVX      | ~6 <mark>9%</mark>   | 8        |  |
| 🗄 🛄 [lo 🔤 : loopstl.cpp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0:3891 in s279_] |   | 💡 2 Ineffective peeled/rem      | 0.150s I    | 0.150s I   | 125; 4 | Expand               | Expand                          | AVX      | ~9 <mark>6%</mark>   | 8        |  |
| 🗄 🛄 [lengelet the theorem of the second se | 5:6249 in s414_] |   |                                 | 0.150s l    | 0.150s I   | 12     | Expand               | Expand                          | AVX      | ~100 <mark>%</mark>  | 4        |  |
| i> <sup>©</sup> [ t stl_numeri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c.h:247 in std   |   | @ 1 Assumed dependency          | 0.150s I    | 0.150s I   | 49     | Scalar               | vector dependence preve         |          |                      | ×        |  |
| <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |   |                                 |             |            |        |                      | -                               |          |                      | >        |  |
| Focus on What vectoriza<br>hot loops issues do I hav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |   |                                 |             | V          |        | Vector ir<br>e being | nstructions<br>used?            |          | low effi<br>s the co |          |  |

#### **Get Faster Code Faster!**

# **THE ROOFLINE MODEL**

### WHAT IS THE ROOFLINE MODEL ?

Do you know how fast you should run?

Comes from Berkeley

Performance is limited by equations/implementation & code generation/hardware

2 hardware limitations

- PEAK Flops
- PEAK Bandwidth

The application performance is bounded by hardware specifications



### **PLATFORM PEAK FLOPS**

How many floating point operations per second



Theoretical value can be computed by specification Example with 2 sockets Intel® Xeon® Processor E5-2697 v2 PEAK FLOP = 2 x 2.7 x 12 x 8 x 2 = **1036.8 Gflop/s** Number of sockets Number of cores 1 port for addition, 1 for multiplication Core Frequency Number of single precision element in a SIMD register

More realistic value can be obtained by running Linpack =~ 930 Gflop/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

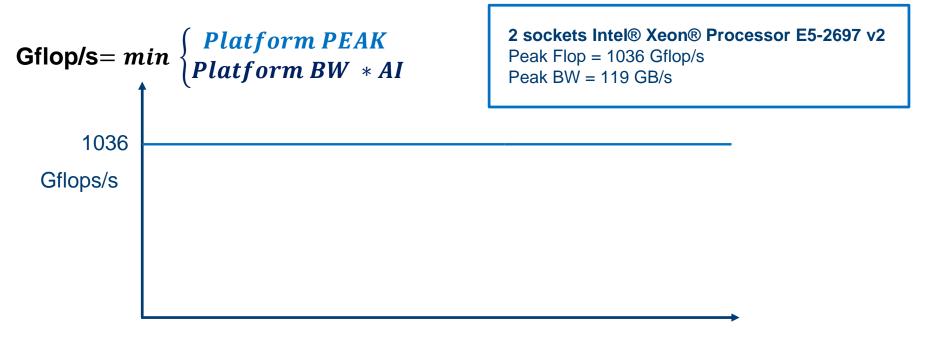


### **PLATFORM PEAK BANDWIDTH**

How many bytes can be transferred per second



Theoretical value can be computed by specification Example with 2 sockets Intel® Xeon® Processor E5-2697 v2 PEAK BW = 2 x 1.866 x 8 x 4 = 119 GB/s Number of sockets Byte per channel Memory Frequency Number of mem channels

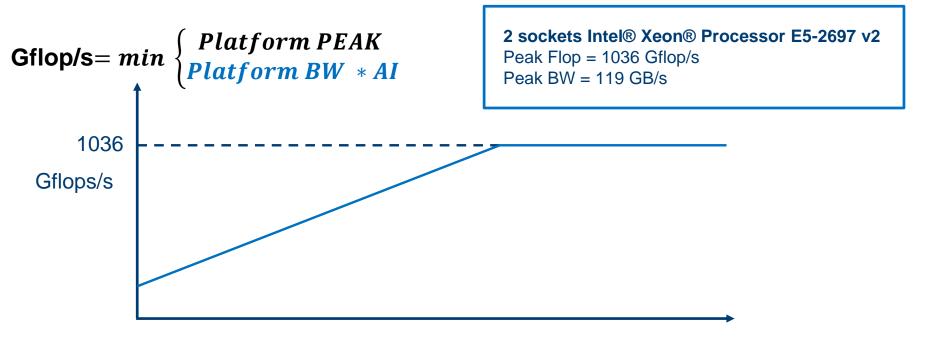

More realistic value can be obtained by running Stream =~ 100 GB/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2





## **DRAWING THE ROOFLINE**

Defining the speed of light

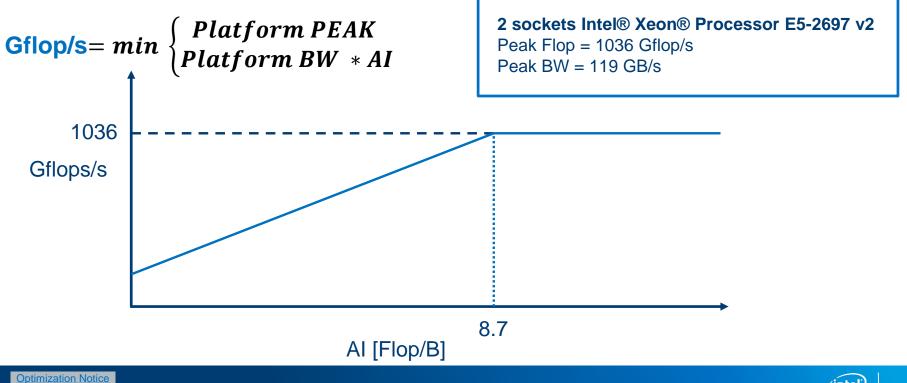



#### AI [Flop/B]



## **DRAWING THE ROOFLINE**

Defining the speed of light




#### AI [Flop/B]



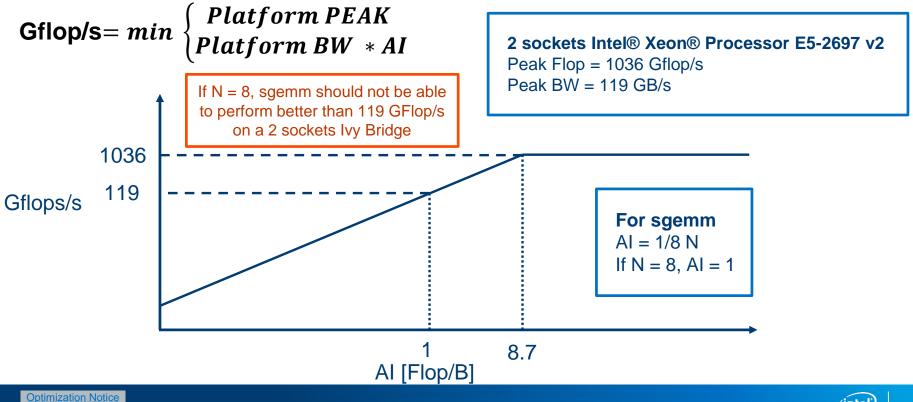
## **DRAWING THE ROOFLINE**

Defining the speed of light



### WHAT IS THE PERFORMANCE BOUNDARY?

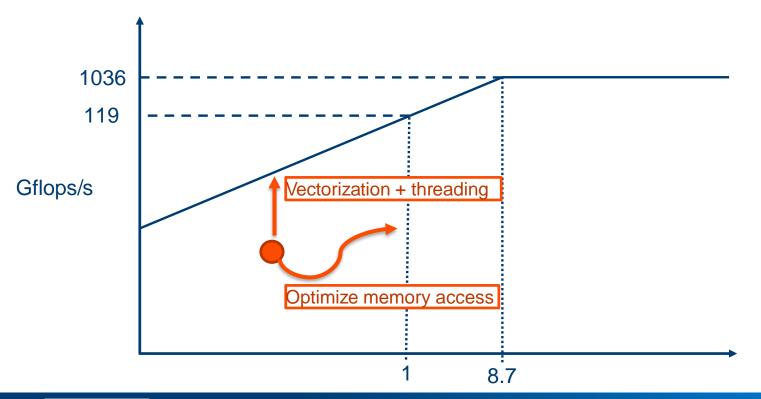
Manual way to do it


Manual counting on matrix/matrix multiplication

```
for(i=0; i<N; i++)
         for(j=0; j<N; j++)
              for(k=0; k<N; k++)
                    c[i][j] = c[i][j] + a[i][k] * b[k][j]
# add = N * N * N
                                #Read = 3 * N * N * 4 bytes
\# mul = N * N * N
                                \#Write = N * N * 4 bytes
                                       AI = \frac{2N^3}{16N^2} = \frac{1}{8}N
```



### **COMPUTE THE MAXIMUM PERFORMANCE**


BW \* Arithmetic Intensity





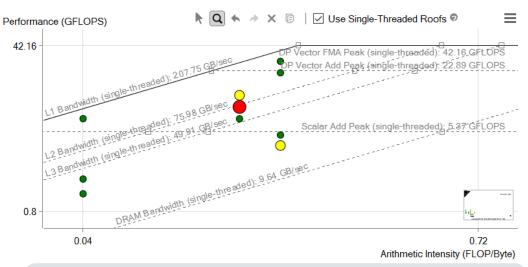
#### AND NOW?

#### How to get better performance?



Optimization Notice Copyright © 2020, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.




34

# **ROOFLINE IN INTEL® ADVISOR**

# What is a Roofline Chart?

A Roofline Chart plots application performance against hardware limitations.

- Where are the bottlenecks?
- How much performance is being left on the table?
- Which bottlenecks can be addressed, and which should be addressed?
- What's the most likely cause?
- What are the next steps?



Roofline first proposed by University of California at Berkeley: <u>Roofline: An Insightful Visual Performance Model for Multicore Architectures</u>, 2009 Cache-aware variant proposed by University of Lisbon: <u>Cache-Aware Roofline Model: Upgrading the Loft</u>, 2013

36


# **Roofline Metrics**

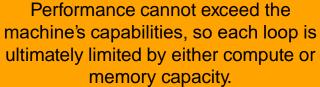
Roofline is based on FLOPS and Arithmetic Intensity (AI).

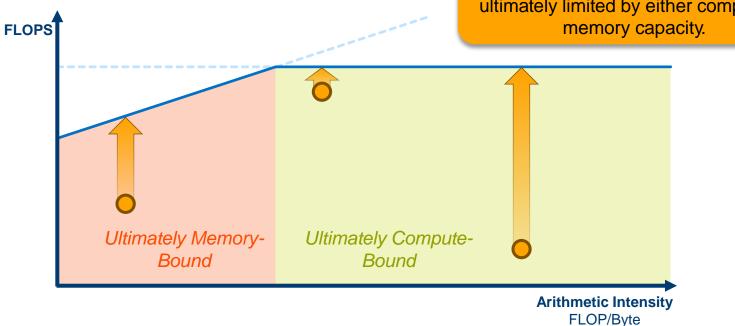
- FLOPS: <u>Fl</u>oating-Point <u>Op</u>erations / <u>S</u>econd
- Arithmetic Intensity: FLOP / Byte Accessed



Collecting this information in Intel® Advisor requires two analyses.

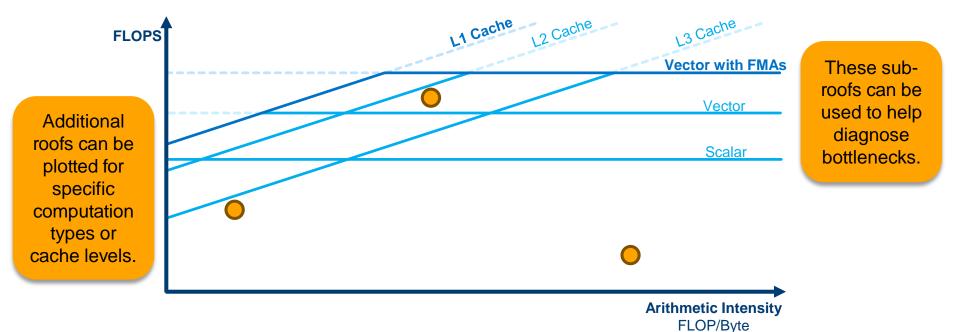



Shortcut to run Survey followed by Trip Counts + FLOPs


Runs system benchmarks and collects timing data.

Collects memory traffic and FLOP data. Must be run separately due to higher overhead that would interfere with timing measurements.

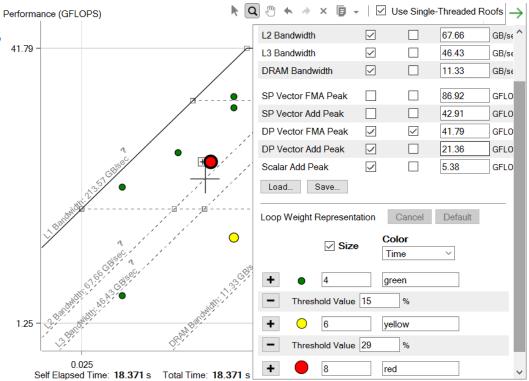
37


## **Ultimate Performance Limits**





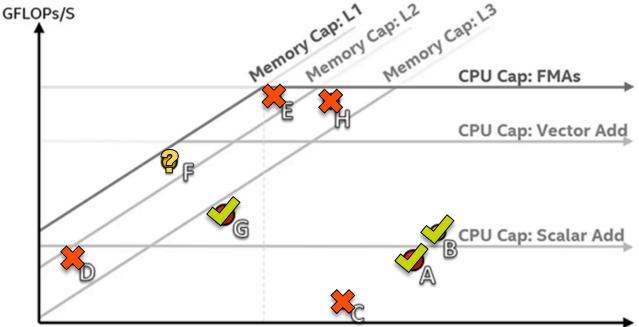



## Sub-Roofs and Current Limits





# The Intel® Advisor Roofline Interface

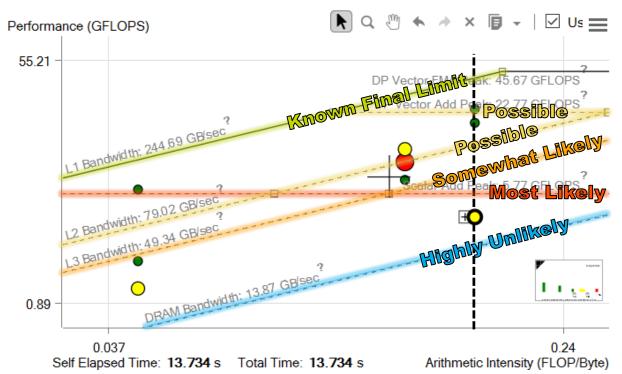

- Roofs are based on benchmarks run before the application.
  - Roofs can be hidden, highlighted, or adjusted.
- Intel® Advisor has size- and color-coding for dots.
  - Color code by duration or vectorization status
  - Categories, cutoffs, and visual style can be modified.



# **Identifying Good Optimization Candidates**

Focus optimization effort where it makes the most difference.

- Large, red loops have the most impact.
- Loops far from the upper roofs have more room to improve.

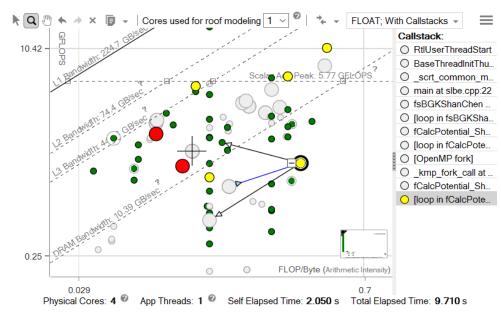



#### Arithmetic Intensity (FLOPs/Byte)

# **Identifying Potential Bottlenecks**

Final roofs *do* apply; sub-roofs *may* apply.

- Roofs above indicate potential bottlenecks
- Closer roofs are the most likely suspects
- Roofs below may contribute but are generally not primary bottlenecks



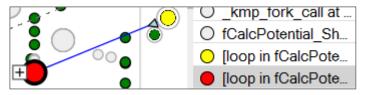

# **ROOFLINE WITH CALL STACKS**

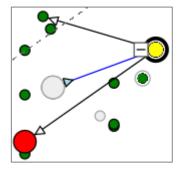
# **Roofline with Call Stacks**

Advisor 2018 Update 1 added call stacks to Roofline.

- Granularity of data can be adjusted.
- Reveals inefficiencies that originate higher in the call chain.
- More accurate view of functions or loops that behave differently under different circumstances
  - Differentiates between instances with different call chains.

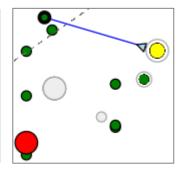



#### Reading the Roofline with Call Stacks Visualizing the Call Chain


Arrows indicate relationships between dots.

- $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ 
  - X is called directly by Y.

X directly calls Z


The call stack displays the call chain for the selected loop. Clicking an entry causes it to flash on the Roofline for easy identification.



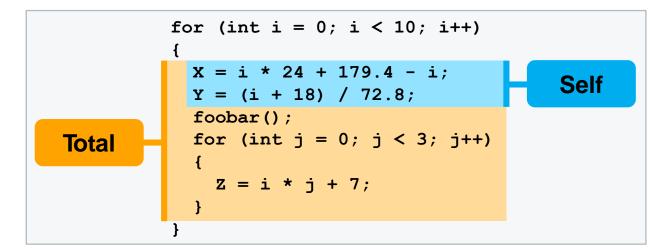


The selected yellow dot was called by the gray dot, and it calls the red and green dots.

Selecting the green dot shows that it is called by the yellow dot, and doesn't call anything itself.



Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.




47

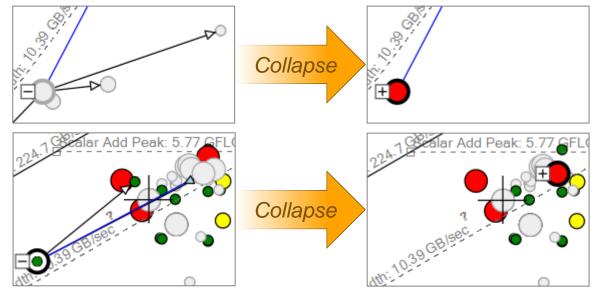
## Self Data vs Total Data

The original Roofline used only **self data**: only work done directly is recorded.

The Roofline with call stacks uses both **self data and total data**, which includes work done in functions or loops called as well as work done directly.






# Reading the Roofline with Call Stacks

Expanding and Collapsing Outer Loops

Collapsing and expanding dots switches between self- and total-data mode.

Dots with no self data are grayed out when expanded and in color when collapsed.

Dots that have self data have the appearance and location based on it when expanded, with a halo of the size related to their total data.



When collapsed, their appearance and location changes to reflect the total data.

# **GUI AND COMMAND LINE**

# Get Roofline data using GUI

| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               | miniGhost - Project Properties                                                                                                                                                                                                                                                                                           | ×                |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C:\Work\projects\miniGhost - Intel A                                                | Advisor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis Target Binary/Symbol Search Source Search                                                            |                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |  |
| Eile     View     Hein       Image:                                                              | Analysis 🗢 🛛 🗃 🛛 🕐                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Survey Analysis Types     Survey Hotspots Analysis     Trip Counts and FLOP Analysis     Suitability Analysis | Launch Application  Specify and configure the application executable (target) to analyze. Press F1 f User-aemed environment variables:                                                                                                                                                                                   | or more details. |  |  |  |  |  |
| Vectorization Threading<br>Workflow Workflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elapsed time: 4,83s 🌾 🕚 Vect                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Refinement Analysis Types     Memory Access Patterns Analysis     Dependencies Analysis                       | Child application:                                                                                                                                                                                                                                                                                                       | Modify           |  |  |  |  |  |
| OFF Batch mode<br>Run Roofline<br>Collect  Collect Collec | Summary Survey & Roofline                                                           | DP Vector F<br>DP Vector F<br>DP Vector F<br>DP Vector F<br>OP Vector F<br>OP Vector F<br>OP Vector F<br>OP Vector F<br>OP Vector F<br>DP Vector F<br>OP Vector F<br>OP Vector F<br>DP Vector F<br>OP Vector F<br>DP Vec |                                                                                                               | Analyze loops that reside in non-executed code paths Analyze Python loops and functions Modules: Include only the following module(s) Exclude the following module(s) Collect information about Loop Trip Counts Collect information about FLOP, L1 memory traffic, and AVX-512 mask usa Collect stacks Use MPI launcher | Modify<br>ge     |  |  |  |  |  |
| G Collect ⊨ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Self GFLOP           Total GFLOPS         1,06375           Self Al         0,12500 | Giga Floating-point Operations Per S<br>Total GFLOPS = Total GFLOP / Total<br>Self AI - Self Arithmetic Intensity - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < >                                                                                                           | OK                                                                                                                                                                                                                                                                                                                       | Cancel           |  |  |  |  |  |
| ✓ FLOP<br>2.1 Check Memory Access Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Al         0,12500                                                            | Floating-Point Operations To Self L1<br>Total AI - Total Arithmetic Intensity - Ra<br>Floating-Point Operations To Total L1 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atio Of Total<br>Transferred Bytes                                                                            |                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |  |
| Collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Self GFLOP 0,41943                                                                  | Giga Floating-Point Operations, Not Inc<br>Functions Called In The Loop Or Func<br>Giga Floating-Point Operations Of Fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion                                                                                                          |                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total SELOP 0,41943                                                                 | Callees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |  |
| <b>G</b> Re-finalize Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Self FLOP Per Iteration 32                                                          | Floating-point Operations Per Loop Ite<br>Elapsed Time Is The Exclusive (Self-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |  |

#### Optimization Notice



# Get roofline data using **command line**. Example:

> source advixe-vars.sh

1<sup>st</sup> method:

> advixe-cl -collect roofline -project-dir ./your\_project -- <your-executablewith-parameters>

### 2<sup>nd</sup> method (more flexible):

> advixe-cl -collect survey -project-dir ./your\_project -- <your-executablewith-parameters>

> advixe-cl -collect tripcounts -flop -project-dir ./your\_project -- <yourexecutable-with-parameters>

> advixe-gui ./your\_project



# Running Intel Advisor XE on a cluster

Example: Collect from middle rank of 3x3x3 cube of processes:

mpirun -n 27 advixe-cl -collect survey-project-dir ./my\_proj ./your\_app
mpirun -n 13 ./your\_app \
 : -n 1 advixe-cl -collect survey -project-dir ./my\_proj ./your\_app \
 : -n 13 ./your\_app

Intel MPI-specific (adding corner rank and middle surface rank):

mpirun -n 27 \
-gtool "advixe-cl -collect survey --project-dir ./my\_proj :1,5,14" ./your\_app

or: I\_MPI\_GTOOL="advixe-cl -collect survey --project-dir ./my\_proj :1,5,14"

# **FLOPS AND MASK UTILIZATION PROFILER**

# **Precise Repeatable FLOPS Metrics**

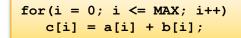
Intel® Advisor – Vectorization Optimization

- FLOPS by loop and function
- All recent Intel processors (not co-processors)

- Instrumentation (count FLOPs) plus sampling (time with low overhead)
- Adjusted for masking with AVX-512 processors

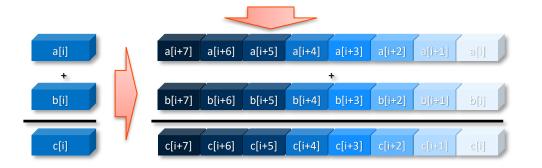
|                                                  |         |        |         |        |                    |         | ITEL ADVISOR 2017      |
|--------------------------------------------------|---------|--------|---------|--------|--------------------|---------|------------------------|
| + - Function Call Sites and Loops                | FLOPS   | _      |         | _      |                    | -       | ≪                      |
| + - Function Call Sites and Loops                | GFLOPS  | AI     | L1 GB/s | GFLOP  | FLOP Per Iteration | L1 GB   | L1 Bytes Per Iteration |
| 🛛 🕗 [loop in matvec at Multiply.c:69]            | 0.8260  | 0.1633 | 5.0586  | 3.0720 | 32                 | 18.8160 | 196                    |
| ≥🗾 [loop in matvec at Multiply.c:60]             | 0.912 0 | 0.1633 | 5.5853  | 3.0720 | 32                 | 18.8160 | 196                    |
| ☑ <sup>™</sup> [loop in matvec at Multiply.c:69] | 1.248 0 | 0.2500 | 4.9920  | 1.3440 | 4                  | 5.3760  | 16                     |
| 🗵 🖱 [loop in matvec at Multiply.c:60]            | 1.592 🛛 | 0.2500 | 6.3699  | 1.3440 | 4                  | 5.3760  | 16                     |
| ±                                                | 3.055 🔲 | 0.2500 | 12.2205 | 0.0960 | 16                 | 0.3840  | 64                     |
| ⊕ [loop in matvec at Multiply.c:60]              | 6.282   | 0.2500 | 25.1279 | 0.0960 | 16                 | 0.3840  | 64                     |

### Optimization Notice


# Getting FLOP/S in Advisor

|                                                     | FLOP/S<br>= #FLOP/Seconds                                                                                                                                                                                                   | Seconds | <b>#FLOP</b><br>- and Mask Utilization<br>- and #Bytes |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|
| 1. Survey Target <sup>®</sup>                       | <ul> <li>Step 1: Survey</li> <li>Not intrusive, sampling based, ~5-10% overhead</li> <li>Time/Performance-representative</li> </ul>                                                                                         |         |                                                        |
| 1.1 Find Trip Counts and FLOPS <sup>●</sup> Collect | <ul> <li>Step 2: Trip counts+FLOPS</li> <li>Precise, instrumentation based</li> <li>Physically count Num-Instructions</li> <li>Possible to do all types of dynamic analysis including mask register tracking etc</li> </ul> |         |                                                        |

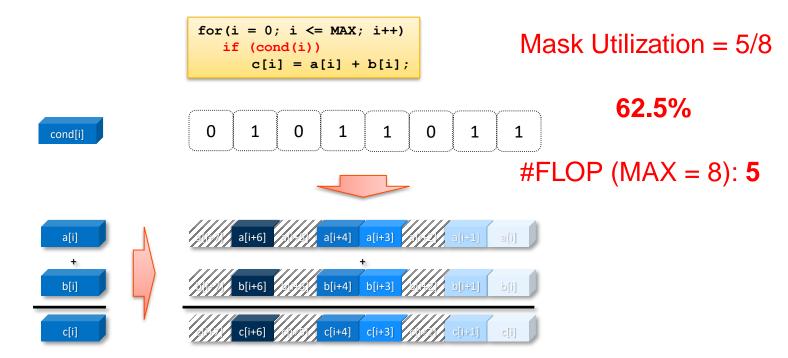
Intel Confidential




# Why Mask Utilization is Important?



**100%** 


## #FLOP (MAX = 8): 8





# Why Mask Utilization Important?

## 3 elements suppressed



# **VECTORIZATION EFFICIENCY**

# Spend your time in the most efficient place! A typical vectorized loop consists of...

- Main vector body
- Fastest among the three!

**Optional peel part** 

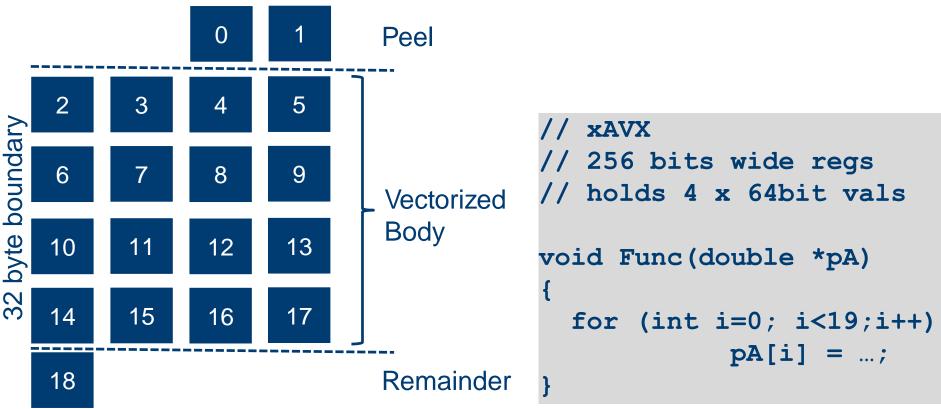
 Used for the unaligned references in your loop. Uses Scalar or slower vector

### **Remainder part**

 Due to the number of iterations (trip count) not being divisible by vector length. Uses Scalar or slower vector.

Fastest!

Larger vector register means more iterations in peel/remainder


- Make sure you align your data! (and you tell the compiler it is aligned!)
- Make the number of iterations divisible by the vector length!



Less

Fast

# What are peels and remainders?



### Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others. Intel Confidential



## Don't Just Vectorize, Vectorize Efficiently

See detailed times for each part of your loops. Is it worth more effort?

| Where should I add vectorization ar                                                                                                        | 🦉 Where should I add vectorization and/or threading parallelism? 🗖 |              |                   |                   |                          |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------|-------------------|-------------------|--------------------------|--|--|--|--|--|
| 🔗 Summary 🛛 😂 Survey Report 🔌 Refinement Rep                                                                                               | oorts 🍐 Annotation                                                 | Report 🛛 🦞 S | uitability Report |                   |                          |  |  |  |  |  |
| Elapsed time: 8,52s       Vectorized       Image: Construction       FILTER:       All Modules       All Sources       Image: Construction |                                                                    |              |                   |                   |                          |  |  |  |  |  |
| Function Call Sites and Loops                                                                                                              | @ Vector Issues                                                    | Self Time 🕶  | Total Time        | Loop Туре         | Why No<br>Vectorization? |  |  |  |  |  |
| □ 🥑 [loop at fractal.cpp:179 in <lambda1>::op</lambda1>                                                                                    |                                                                    | 0,013s1      | 12,020s           | Collapse          | Collapse                 |  |  |  |  |  |
| 🗈 😈 [loop at fractal.cpp:179 in <lambda1>::o 🛛 🗹</lambda1>                                                                                 | 🛛 💡 🖞 Serialized use                                               | 0,013s I     | 11,281s 🗔         | Vectorized (Body) |                          |  |  |  |  |  |
| i> <sup>™</sup> [loop at fractal.cpp:179 in <lambda1>::o 🗹</lambda1>                                                                       |                                                                    | 0,000s l     | 0,163s1           | Peeled            |                          |  |  |  |  |  |
| i>☉ [loop at fractal.cpp:179 in <lambda1>::o 🗹</lambda1>                                                                                   |                                                                    | 0,000s l     | 0,576s I          | Remainder         |                          |  |  |  |  |  |
| i> <sup>™</sup> [loop at fractal.cpp:177 in <lambda1>::oper</lambda1>                                                                      |                                                                    | 0,010s l     | 12,030s 📖         | Scalar            |                          |  |  |  |  |  |
| <                                                                                                                                          | 1                                                                  |              |                   |                   | 1                        |  |  |  |  |  |

## Get Specific Advice For Improving Vectorization

Intel® Advisor – Vectorization Advisor

| 📕 Where should I add vectorization an                    | d/or threading     | , parallelisn         | n? 🗖                 |                 | , li                    | ntel Ad    | visor    | XE 2016    |
|----------------------------------------------------------|--------------------|-----------------------|----------------------|-----------------|-------------------------|------------|----------|------------|
| 🔗 Summary 🛛 🛠 Survey Report 🛛 🍅 Refinement Rep           | orts 🍐 Annotation  | Report 🛛 🦞 Su         | itability Report     |                 |                         |            |          |            |
| Elapsed time: 8,81s Vectorized Not Vectorized            | ් FILTER: A        | All Modules           | ✓ All Sources        | *               |                         |            |          | ্          |
| Function Call Sites and Loops                            | Vector Issues      | Self Time -           | Total Time           | Loop Type       | Why No Vectorization?   | Vectoriz   | ed Loops | ^          |
|                                                          | -                  |                       | Total Time           | Loop Type       | why no vectorization:   | Vecto      | Estim    | Vector Len |
| ₃ುರ್[loop at market Click to see rec                     | ommenda            | ation                 | 11,460s 📖            | Scalar          |                         |            |          |            |
| i> 🖞 [loop at arena.cpp:88 in tbb::tbb::]                |                    | 0,000s l              | 11,460s 💳            | Scalar          |                         |            |          |            |
| 🖬 😃 [loop at fractal.cpp:179 in <lambda1>::op</lambda1>  |                    | . 0,000s              | 2,022s 0             | <u>Collapse</u> | <u>Collapse</u>         |            |          |            |
| 🗈 🖑 [loop at fractal.cpp:179 in <lambda1>::o 🗌</lambda1> | 💡 👱 Data type co   | 0,000s I              | 2,022s 0             | Remainder       |                         |            |          |            |
| <                                                        |                    |                       |                      |                 |                         |            |          | >          |
|                                                          |                    |                       |                      |                 |                         |            |          | -          |
| Top Down Source Loop Assembly Assistance                 | Recommendation     | s 📮 Compile           |                      |                 |                         |            |          |            |
| A a locus: Ineffective peoled/reg                        | naindar loon(      | ) procont             |                      |                 |                         |            |          | ^          |
| 3 Issue: Ineffective peeled/rer                          | · · · · ·          |                       | hadu Immen           | o norformar     | so hu mouing source le  | on iterati | ions fro |            |
| peeled/remainder loops to the lo                         |                    | ig in the <u>toop</u> | <u>bouy</u> . Improv | e periormai     | ice by moving source to | op iterat  |          |            |
| $\bigcirc$ Disable unrolling                             |                    |                       |                      |                 |                         |            |          |            |
| The <u>trip count</u> after loop un                      | rolling is too sma | II compared t         | Advis                | or sho          | ws hints to m           |            |          | nroll      |
| factor using a <u>directive</u> .                        | 2                  |                       |                      |                 |                         |            |          |            |
| ICL/ICC/ICPC Directive                                   | IFORT Directi      | ve                    | Iterati              | ons to          | vector body.            |            |          |            |
| #pragma nounroll                                         | IDIR\$ NOUNRO      | LL                    |                      |                 |                         |            |          |            |
| #pragma unroll                                           | IDIR\$ UNROLL      |                       |                      |                 |                         |            |          |            |
| Read More:                                               |                    |                       |                      |                 |                         |            |          |            |
| • <u>User and Reference G</u><br>Reference > unroll      |                    | C++ Compile           | <u>r 15.0</u> > Com  | piler Refer     | rence > Pragmas > In    | itel-spe   | cific Pr | agma<br>v  |



## Critical Data Made Easy Loop Trip Counts

### Knowing the time spent in a loop is not enough!

| « 📕 Where should I add vect                                 | orization a    | nd/or threa  | ading                   | para       | llelism       |         |                |                                               | Intel                  | Advi           | isor XE 2                                  | 016                          |
|-------------------------------------------------------------|----------------|--------------|-------------------------|------------|---------------|---------|----------------|-----------------------------------------------|------------------------|----------------|--------------------------------------------|------------------------------|
| 🍄 Summary 🛭 😂 Survey Report 🔌 Ref                           | inement Report | s 🍐 Annotati | on Repo                 | 014        | , suitability | Report  |                |                                               |                        |                |                                            |                              |
| Program time: 12.82s Vectorized N                           | ot Vectorized  | X FUZ        | n: All N                | Module     | s             |         | ~              | All Sources 🛛 🗸                               | ]                      |                |                                            | ٩                            |
| Function Coll City and Lange                                | Self Time -    | Total Time   | ۵                       | ଢ          | Trip Cour     | its     |                | «                                             | Compiler Vectorization |                |                                            |                              |
| Function Call Sites and Loops                               | Self Time*     | Total Time   | œ                       | ¥          | Median        | Min     | Max            | Call Count                                    | Loop Type              |                | Why No Vec                                 | torizatio                    |
| 🗆 🔽 [loop at Multiply.c:53 in matvec]                       | 11.898s 💳      | 11.898s 🛑    |                         | <u> </u>   |               |         |                |                                               | Collapse               |                | <u>Collapse</u>                            |                              |
| ₃> 🔽 [loop at Multiply.c:53 in matvec]                      | 11.851s 📖      | 11.851s 🔲    |                         | _ <u> </u> | 101           | 101     | 101            | 12000000                                      | Vectorized (           | Body)          | vector deper                               | ndence p                     |
| ₃> 🔽 [loop at Multiply.c:53 in matvec]                      | 0.047s I       | 0.047s I     |                         |            | 3             | 3       | 3              | 1000000                                       | Vectorized (           | Body)          |                                            |                              |
| i>[loop at Multiply.c:53 in matvec]                         | 0.413s I       | 0.413s I     |                         |            | 101           | 101     | 101            | 2000000                                       | Scalar                 |                |                                            |                              |
| Iloop at Multiply.c:45 in matvec]                           | 0.109s         | 12.373s 🗔    |                         | <u> </u>   |               |         |                |                                               | Expand                 |                | Expand                                     |                              |
| i>[loop at Driver.c:146 in main]                            | 0.016s l       | 12.483s 💳    |                         | @ <u>1</u> | 1000000       | 1000000 | 100000         | 0 1                                           | Scalar                 |                | octor deper                                | ndence p                     |
| <b>1.1 Find Trip Counts</b><br>Find how many iterations are | e executed.    | act          | hecł<br>ual ti<br>bunts | rip        |               |         | 101 1<br>alleo | is iteratir<br>times bu<br>d > millio<br>imes | ť                      | ca<br>tin<br>a | nce the<br>alled so<br>nes it w<br>big win | o many<br>ould be<br>n if we |
| <u>Command Line</u>                                         |                |              |                         |            |               |         |                |                                               |                        |                | can ge<br>vector                           |                              |

#### Optimization Notice Copyright © 2020, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.

8

# Factors that slow-down your Vectorized code

1.A. Indirect memory access

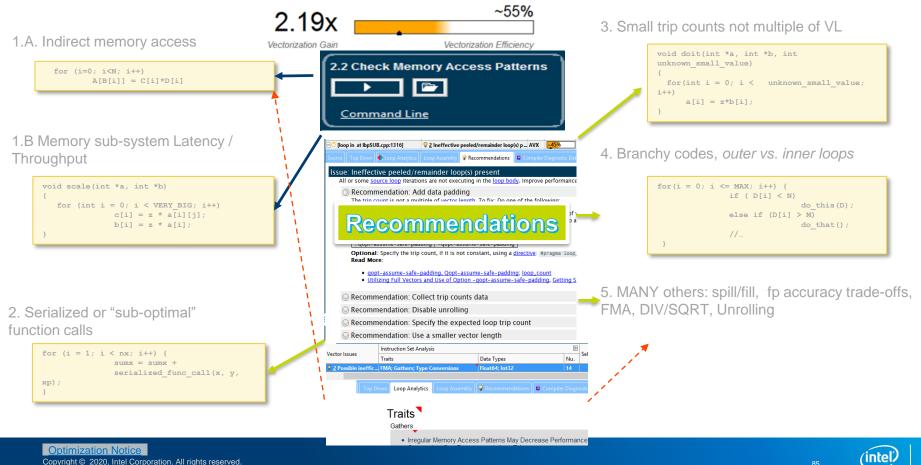
1.B Memory sub-system Latency / Throughput

```
void scale(int *a, int *b)
{
    for (int i = 0; i < VERY_BIG; i++){
        c[i] = z * a[i][j];
        b[i] = z * a[i];
    }
}</pre>
```

2. Serialized or "sub-optimal" function calls

```
for (i = 1; i < nx; i++) {
    sumx = sumx +
        serialized_func_call(x, y, xp);
}</pre>
```

3. Small trip counts not multiple of VL

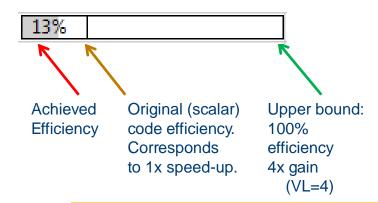

```
void doit(int *a, int *b, int unknown_small_value)
{
  for(int i = 0; i < unknown_small_value; i++)
      a[i] = z*b[i];
}</pre>
```

### 4. Branchy codes, outer vs. inner loops

5. MANY others: spill/fill, fp accuracy trade-offs, FMA, DIV/SQRT, Unrolling, even AVX throttling..



# Factors that slow-down your Vectorized code




\*Other names and brands may be claimed as the property of others.

# Vector Efficiency: All The Data In One Place

## My "performance thermometer"

Loops Self Time Vecto... Efficiency A Estimated Gain Vect... Co Traits ector Widths 13% 🗄 🛄 [loop at lbpSUB.cpp:1280 in fPropagationS... 🛛 AVX 0.53 Δ 0,53 Blends; Extracts; Inserts; Shuffles 128/256 2.312s 🔲 309 Iloop at IbpGET.cpp:152 in fGetFracSite 2,38 2,34 Blends; Inserts; Masked Stores 128/256 0,030s l AVX 8 369 ■ U [loop at lbpGET.cpp:42 in fGetOneMassSite] AVX 2.86 8 2,79 256 0,100s l AVX 36% 2.86 8 2,79 256 0,010sl 38% 🗄 🛄 [loop at lbpGET.cpp:334 in fGetOneDirecSp ... 🛛 AVX 3.05 8 2,97 Type Conversions 128/256 0.011sl 100% [loop at lbpBGK.cpp:840 in fCollisionBGK] AVX 2.05 2.05 128 0.080sl



- Auto-vectorization: affected <3% of code
  - With moderate speed-ups
- First attempt to simply put #pragma simd:
  - Introduced slow-down
- Look at Vector Issues and Traits to find out why
  - All kinds of "memory manipulations"
  - Usually an indication of "bad" access pattern

Survey: Find out if your code is "under vectorized" and why

**Optimization Notice** 

Copyright © 2020, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.



87

Elapsed time: 8,01s

# Advisor Survey: Focus + Characterize.

## Focus and order vectorized loops

| Function Call Sites and                    | ۵ |                                          | Vector | zed Loops    |       | $\gg$ | Instruction Set An | alysis  |
|--------------------------------------------|---|------------------------------------------|--------|--------------|-------|-------|--------------------|---------|
| Loops                                      | œ | Vector Issues                            | Vect   | Efficiency 🕶 | Gain  | VL    | Traits             | Data T. |
| ± 🖱 [loop in s241_ at lo                   |   |                                          | AVX    | ~97%         | 7,76x | 8     |                    | Float32 |
| ± 🖞 [loop in s152s_ at lo                  |   |                                          | AVX2   | ~96%         | 7,71x | 8     | FMA                | Float32 |
| + 🖱 [loop in s452_ at lo                   |   | Data type conversions present            | AVX2   | ~96%         | 7,71x | 8     | FMA; Type Con      | Float32 |
| + 🖱 [loop in s413_ at lo                   |   | 💡 1 Ineffective peeled/remainder         | AVX2   | ~96%         | 7,69x | 4; 8  | FMA                | Float32 |
| ± 🖸 [loop in s273_ at lo                   |   | I Possible inefficient memory a          | AVX2   | ~96%         | 7,69x | 8     | FMA; Masked St     | Float32 |
| + 🖱 [loop in s279_ at lo                   |   | Possible inefficient memory a            | AVX2   | ~95%         | 7,56x | 8     | Blends; FMA        | Float32 |
| ± 🖱 [loop in s253_ at lo                   |   | 2 Possible inefficient memory a          | AVX2   | ~91%         | 7,30x | 8     | Blends; FMA        | Float32 |
| ± <sup>(1</sup> ] [loop in s251_ at lo     |   |                                          | AVX2   | ~90%         | 7,23x | 8     | FMA                | Float32 |
| ± <sup>(5</sup> ] [loop in s271_ at lo     |   | 2 Possible inefficient memory a          | AVX2   | ~90%         | 7,16x | 4; 8  | FMA; Masked St     | Float32 |
| ± <sup>(1</sup> ] [loop in vif_ at loop    |   | I Possible inefficient memory a          | AVX    | ~86%         | 6,90x | 8     | Blends             | Float32 |
| ± 🖱 [loop in s274_ at lo                   |   | I Possible inefficient memory a          | AVX2   | ~79%         | 6,29x | 8     | Blends; FMA; M     | Float32 |
| ± <sup>™</sup> [loop in SET2D at m         |   |                                          | AVX    | ~73%         | 5,81x | 8     |                    | Float32 |
| ± <sup>(5</sup> ] [loop in std::_Fill < fl |   |                                          | AVX    | ~73%         | 5,81x | 8     |                    | Float32 |
| ± <sup>™</sup> [loop in SET2D at m         |   | ♀ <u>1</u> Data type conversions present | AVX2   | ~66%         | 5,31x | 8     | Divisions; Type    | Float32 |
| Source Top Down Lo                         |   |                                          | mendat |              |       |       | Divisions; Type    | Fillats |

### Issue: Assumed dependency present

#### Issue: Ineffective peeled/remainder loop(s) present

All or some source loop iterations are not executing in the loop body. Improve performance by moving sour

Recommendation: Add data padding

The trip count is not a multiple of vector length. To fix: Do one of the following:

- . Increase the size of objects and add iterations so the trip count is a multiple of vector length.
- · Increase the size of static and automatic objects, and use a compiler option to add data padding

| Windows* OS               | Linux* OS                 |
|---------------------------|---------------------------|
| /Qopt-assume-safe-padding | -qopt-assume-safe-padding |

Note: These compiler options apply only to Intel® Many Integrated Core Architecture (Intel® MIC Archi

When you use one of these compiler options, the compiler does not add any padding for static and aut application. To satisfy this assumption, you must increase the size of static and automatic objects in y

Optional: Specify the trip count, if it is not constant, using a <u>directive</u>: #pragma loop\_count Read More:

<u>qopt-assume-safe-padding</u>, <u>Qopt-assume-safe-padding</u>; <u>loop\_count</u>

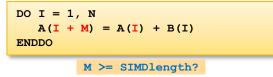
## Vectorized 🕙 Not Vectorized

- Efficiency my performance thermometer
- **Recommendations** get tip on how to improve performance
  - (also apply to scalar loops)

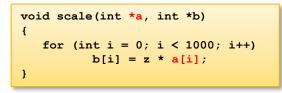


# **Loop Analytics**

## Get detailed information about your loops


| Source Top Down Loop Analytics Loop Assembly P Recommendations                           | Compiler Diagnostic Details                                                                                                        |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Vectorized (Body; Remainder) Total time                                                  | Traits<br>Inserts                                                                                                                  |
| AVX 5.626s<br>Instruction Set Self time                                                  | Instruction Mix<br>Memory: 7 Compute: 5 Other: 4                                                                                   |
| <ul> <li>▶ Memory 44% (7)</li> <li>▶ Compute 31% (5)</li> <li>● Other 25% (4)</li> </ul> | Memory: 43.75%         Compute: 31.25%         Other: 25%           Vector: 18         Scalar: 25%         Vecto         Scalar: 1 |
| Insruction Mix Summary                                                                   |                                                                                                                                    |
| 2.19x<br>Vectorization Gain Vectorization Efficience                                     |                                                                                                                                    |




# **DEPENDENCY ANALYSIS**

# Factors that prevent Vectorizing your code

1. Loop-carried dependencies



1.A Pointer aliasing (compiler-specific)



2. Function calls (incl. indirect)

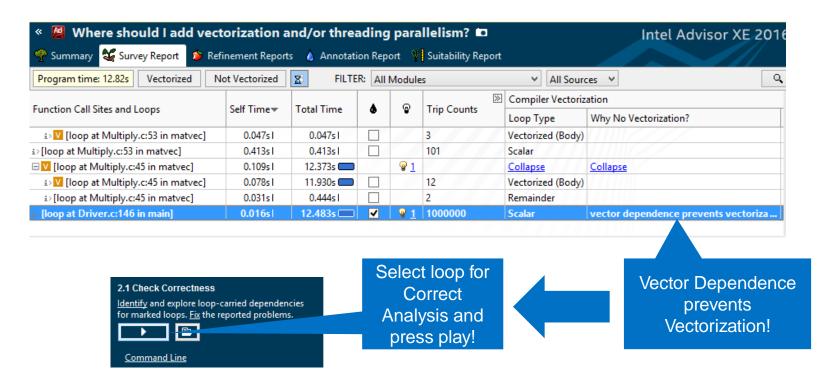
```
for (i = 1; i < nx; i++) {
    x = x0 + i * h;
    sumx = sumx + func(x, y, xp);
}</pre>
```

```
And others.....
```

3. Loop structure, boundary condition

```
struct _x { int d; int bound; };
void doit(int *a, struct _x *x)
{
  for(int i = 0; i < x->bound; i++)
        a[i] = 0;
}
```

### 4 Outer vs. inner loops


```
for(i = 0; i <= MAX; i++) {
  for(j = 0; j <= MAX; j++) {
    D[j][i] += 1;
  }
}</pre>
```

5. Cost-benefit (compiler specific..)



# Is It Safe to Vectorize?

## Loop-carried dependencies analysis verifies correctness



# Data Dependencies – Tough Problem #1

Is it safe to force the compiler to vectorize?

### Issue: Assumed dependency present

The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependency (Read after write - RAW) in the loop. Improve performance by investigating the assumption and handling accordingly.

### Enable vectorization

Potential performance gain: Information not available until Beta Update release Confidence this recommendation applies to your code: Information not available until Beta Update release

The Correctness analysis shows there is no real dependency in the loop for the given workload. Tell the compiler it is safe to vectorize using the restrict keyword or a <u>directive</u>.

| ICL/ICC/ICPC Directive           | IFORT Directive           | Outcome                                            |
|----------------------------------|---------------------------|----------------------------------------------------|
| #pragma simd or #pragma omp simd | IDIR\$ SIMD or ISOMP SIMD | Ignores all dependencies in the loop               |
| #pragma ivdep                    | IDIR\$ IVDEP              | Ignores only vector dependencies (which is safest) |

### Read More:

- User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific Pragma Reference >
  - ivdep
  - omp simd



# Correctness – Is It Safe to Vectorize?

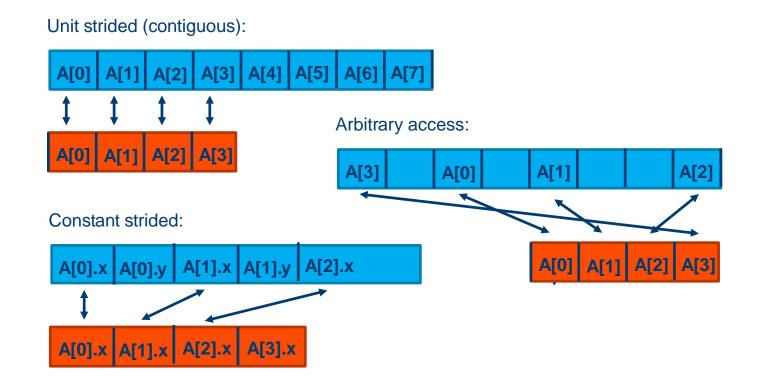
## Loop-carried dependencies analysis

| Site Name                | Site Function                              | Site Info             | Loop-Carri                              | ied Dependencies    | Strides                             | Distribution Access Pat  | tern |   |  |
|--------------------------|--------------------------------------------|-----------------------|-----------------------------------------|---------------------|-------------------------------------|--------------------------|------|---|--|
| loop_site_6              | main                                       | main.cpp:13           | RAW:1                                   | A WAR:1 A WAW:      | 1 91%                               | / 0% / 9% 📕 Mixed strid  | es   |   |  |
|                          |                                            |                       |                                         |                     |                                     |                          |      |   |  |
|                          |                                            |                       |                                         |                     |                                     |                          |      |   |  |
|                          |                                            |                       |                                         |                     |                                     |                          |      |   |  |
|                          |                                            |                       |                                         |                     | De                                  | etected                  |      |   |  |
|                          |                                            |                       |                                         |                     |                                     |                          |      |   |  |
|                          |                                            |                       |                                         |                     | do                                  | nondonoid                |      |   |  |
|                          |                                            |                       |                                         |                     | de                                  | pendencie                | es   |   |  |
| Memory                   | Access Patterns Rep                        | ort Correctn          | ess Report                              |                     | de                                  | pendencie                | es   |   |  |
|                          | Access Patterns Rep<br>and Messages        | ort Correctn          | ess Report                              |                     | de                                  | pendencie                | S    | _ |  |
| Problems                 | and Messages                               |                       | ess Report<br>Site Name                 | Sources             | de                                  | pendencie                | es   | _ |  |
| Problems<br>ID @         | and Messages                               |                       |                                         | Sources<br>main.cpp | -                                   |                          | es   | _ |  |
| Problems<br>ID 🍳         | and Messages<br>Type                       | rmation               | Site Name<br>loon_site_6                |                     | Modules<br>test_1.exe               | State                    | es   | _ |  |
| Problems<br>ID &<br>P1 I | and Messages<br>Type<br>Parallel site info | rmation<br>dependency | Site Name<br>loon_site_6<br>loop_site_6 | main.cpp            | Modules<br>test_1.exe<br>test_1.exe | State<br>✔ Not a problem | 98   | _ |  |

| /rite after read | dependency: Code L | ocations |            |                          |  |
|------------------|--------------------|----------|------------|--------------------------|--|
| Description      | Source             | Function | Module     | State                    |  |
| X17 Read         | 🖹 main.cpp:22      | main     | test_1.exe | New                      |  |
| 20               | k += a[9];         |          |            |                          |  |
| 21               | k *= a[8];         |          |            |                          |  |
| 22               | k -= a[7];         |          |            |                          |  |
| 23               | k += a[6];         |          |            |                          |  |
| 24               | k *= a[5];         |          |            |                          |  |
| X18 Read         | 🖹 main.cpp:23      | main 👩   |            | B. M                     |  |
| 21               | k *= a[8];         |          | 0          | Press of the December of |  |
| 22               | k -= a[7];         |          | Source     | e lines with Read and    |  |
| 23               | k += a[6];         |          |            |                          |  |
|                  |                    |          | Write a    | accesses detected        |  |

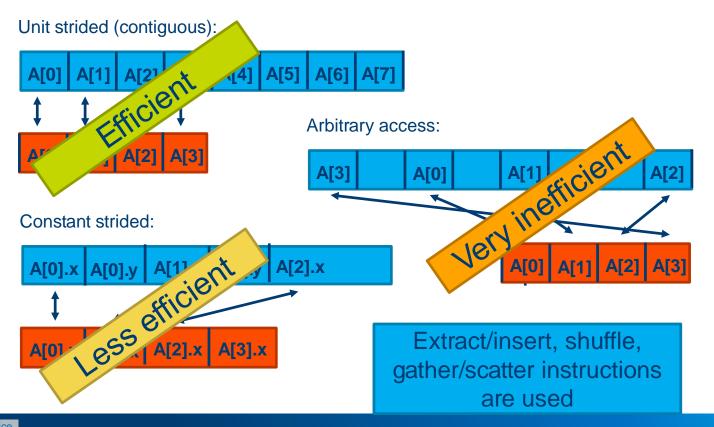
Received recommendations to force vectorization of a loop:

- 1. Mark-up loop and check for REAL dependencies
- 2. Explore dependencies with code snippets


In this example 3 dependencies were detected:

- RAW Read After Write
- WAR Write After Read
- WAW Write After Write

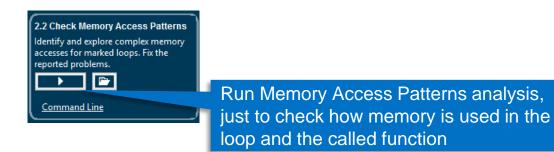
# This is NOT a good candidate to force vectorization!


# **MEMORY ACCESS PATTERN ANALYSIS**

# Memory access patterns






# Memory access patterns





## Improve Vectorization Memory Access pattern analysis

| 🍄 Summary 🚭 Survey Report 🍅 Refinement R                     | lepo     | rts 💧 Annotation R     | eport 🛛 🆞 Su | uitability Report |                   |                         |
|--------------------------------------------------------------|----------|------------------------|--------------|-------------------|-------------------|-------------------------|
| Elapsed time: 8,52s Vectorized Not Vectorized                | d        |                        |              |                   | ×                 |                         |
| Function Call Sites and Loops                                | ٥        | Select loc<br>interest | ops of       |                   | Loop Туре         | Why No<br>Vectorization |
| = ⊍ [loop at fractal.cpp:179 in <lambda1>::op</lambda1>      |          | ₩ 4                    | 0,013s1      | 12,020s           | <u>Collapse</u>   | Collapse                |
| 🔹 🖳 [loop at fractal.cpp:179 in <lambda1>::o</lambda1>       | ✓        | 🗧 🛓 serialized use     | 0,013s1      | 11,281s 🗔         | Vectorized (Body) |                         |
| i> ॑ [loop at fractal.cpp:179 in <lambda1>::o</lambda1>      | ~        | 💡 2 Data type co       | 0,000s l     | 0,163s I          | Peeled            |                         |
| i> 🖱 [loop at fractal.cpp:179 in <lambda1>::o 🚺</lambda1>    | <b>~</b> | 💡 2 Data type co       | 0,000s l     | 0,576s I          | Remainder         |                         |
| i> 🖱 [loop at fractal.cpp:177 in <lambda1>::oper [</lambda1> |          | 💡 2 Data type co       | 0,010s l     | 12,030s           | Scalar            |                         |





## Irregular access patterns decreases performance! Gather profiling

## Run Memory Access Pattern Analysis



|   | 0%:percentage of memory instructions with unit stride or stride 0 accesses                                                                                                                                                     |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Unit stride (stride 1) = Instruction accesses memory that consistently changes<br>by one element from iteration to iteration                                                                                                   |
|   | Uniform stride (stride 0) = Instruction accesses the same memory from iteration to iteration                                                                                                                                   |
|   | 50%: percentage of memory instructions with fixed or constant non-unit<br>stride accesses                                                                                                                                      |
|   | Constant stride (stride N) = Instruction accesses memory that consistently changes<br>by N elements from iteration to iteration                                                                                                |
|   | Example: for the double floating point type, stride 4 means the memory<br>address accessed by this instruction increased by 32 bytes, (4*sizeof(double))<br>with each iteration                                                |
| 4 | 50%: percentage of memory instructions with irregular (variable or random)<br>stride accesses                                                                                                                                  |
|   | Irregular stride = Instruction accesses memory addresses that change by an<br>unpredictable number of elements from iteration to iteration<br>Typically observed for indirect indexed array accesses, for example, a[index[i]] |
|   | <ul> <li>gather (irregular) accesses, detected for v(p)gather* instructions on AVX2<br/>Instruction Set Architecture</li> </ul>                                                                                                |

### **Optimization Notice**

## Enhanced Memory Access Analysis Are you bandwidth or compute limited?

## **Measure Footprint**

 Compare to cache size Does it fit in L2 cache?

## Variable References

 Map data to variable names for easier analysis

Gather/Scatter

 Detect unneeded gather/scatters that reduce performance

| Site Lo                        | ocation                               | ite Location Loop-Carried Depender |                    |               |             |         | es Strides Distribution 🔺    |                                    |         | Access Pattern                        | Max. Site Foot | orint 🔺 |
|--------------------------------|---------------------------------------|------------------------------------|--------------------|---------------|-------------|---------|------------------------------|------------------------------------|---------|---------------------------------------|----------------|---------|
| 🖱 [loo                         | p in s41                              | 17_ at loo                         | pstl.cpp:76        | No informa    | tion availa | ble     | 50% / 50% / 0% Mixed strides |                                    |         | 192B                                  |                |         |
| -<br>0 [loo                    | pp in s44                             | 2 at loop                          | stl.cpp:681        | 5] No informa | tion availa | ble     | 56%/0                        | 0% / 449                           | %       | Mixed strides                         | 256B           |         |
|                                | •                                     |                                    |                    | 7] No informa |             |         | 60%/                         | 0% / 409                           | %       | Mixed strides                         | 320B           |         |
| Memo                           | ory Acc                               | ess Patterr                        | ns Report          | Dependencie   | es Report   | @ Reco  | mmendation                   | IS                                 |         |                                       |                |         |
| ID                             | •                                     | Stride                             | Туре               |               | Source      |         | Nested Func                  | ested Function Variable references |         |                                       |                | Mo      |
| ⊟ P2                           |                                       |                                    | Gather str         | ide           | loopstl.c   | pp:3450 |                              |                                    | a, c, c | I                                     | 320B           | lcd     |
| 1 2/                           |                                       |                                    |                    |               |             |         |                              |                                    |         |                                       |                |         |
| 34                             | 448<br>449<br><mark>450</mark><br>451 | if<br>{                            |                    | = c_[i_]      |             | _       |                              |                                    |         |                                       |                |         |
| 34<br>34<br>34<br>34           | 449<br>450<br>451<br>452              | {                                  | a[i_] +<br>b[i_] + |               |             | _       |                              |                                    |         | ather/scatter dat                     | taile          |         |
| 34<br>34<br>34<br>34<br>Module | 449<br>450<br>451<br>452              | if<br>{<br>}<br>x!0x432340         | a[i_] +            | = c_[i_]      |             | ;       | Physical Stride              | Op 💋                               |         | Gather/scatter det<br>Pattern: "Unit" | tails          |         |



Roofline model proposed by Williams, Waterman, Patterson: <a href="http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf">http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf</a>

"Cache-aware Roofline model: Upgrading the loft" (Ilic, Pratas, Sousa, INESC-ID/IST, Thec Uni of Lisbon) http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf



# **Additional Material**

## Intel® Advisor – Threading Design & Prototyping:

- Product page overview, features, FAQs, support...
- Training materials movies, tech briefs, documentation...
- Evaluation guides step by step walk through
- Reviews

## Additional Analysis Tools:

- Intel® VTune Amplifier performance profiler
- Intel® Inspector memory and thread checker / debugger

## **Additional Development Products:**

Intel® Software Development Products





# **GETTING STARTED**

# Before you analyze

**Create Project** 

|         |               | roioot                         | vecsampple - Project Properties |                   |                                                                                                                                                                  |                                       |        |  |  |
|---------|---------------|--------------------------------|---------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|--|--|
| File->N | iew->r        | ΤΟJECI                         | Survey A                        | Survey/Suitabil   | th Source Search vey/Suitability Launch Application ifigure the application executable (target) to analyze. Press pplication executable (target) file specified. | s F1 for more details.                | Browse |  |  |
|         |               |                                |                                 | Application parar | meters:                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · | Modify |  |  |
|         |               | Create a Project               |                                 | ? ×               | directory as working directory                                                                                                                                   | v .                                   | Browse |  |  |
|         | Project name: | vecsampple                     |                                 |                   | onment variables:                                                                                                                                                |                                       | Modify |  |  |
|         | Location:     | C:\advisor_samples\vec_samples | Browse filing mode Auto         |                   |                                                                                                                                                                  |                                       |        |  |  |
|         |               | Create                         | Project                         | Cancel            |                                                                                                                                                                  |                                       |        |  |  |
|         |               |                                | < >                             |                   |                                                                                                                                                                  |                                       |        |  |  |
|         |               |                                |                                 |                   |                                                                                                                                                                  | ОК                                    | Cancel |  |  |



# Analyze what loops you are spending your time in and how they have been vectorized!

|                                                     | iding.                                                           |           | vectorization |                                                   |                                | Click  | Collect                |          |                   |           |                         |          |                                    |
|-----------------------------------------------------|------------------------------------------------------------------|-----------|---------------|---------------------------------------------------|--------------------------------|--------|------------------------|----------|-------------------|-----------|-------------------------|----------|------------------------------------|
| 1.1 Find Trip<br>Find how m<br>Collect<br>Command L | any iteratio                                                     | ons are ( | executed.     |                                                   |                                |        | Survey                 | Rep      | ort               |           |                         |          |                                    |
| Mark Loops                                          |                                                                  |           | -             |                                                   |                                |        |                        |          |                   |           |                         |          |                                    |
|                                                     |                                                                  |           | nould Ladan   |                                                   | ion and                        | , adir | ng parallelism? 🗖      |          |                   |           | Intel Ad                | lvisor ) | XE 2016                            |
| There are                                           | 🌪 Summ                                                           | nary      | Survey Report | 🍅 Refinen                                         | nent Rep                       |        |                        | ort      |                   |           |                         |          |                                    |
|                                                     |                                                                  |           |               |                                                   |                                |        |                        |          |                   |           |                         |          |                                    |
|                                                     | Elapsed t                                                        | ime: 15   |               | ized 🕑 Not                                        | Vectoriz                       | Comr   | mand line              |          | × All             | Sources 🗸 |                         |          | Q.                                 |
|                                                     |                                                                  |           | .47s Uectori  |                                                   |                                |        | mand line              | Vectoriz | ← All<br>ed Loops |           |                         | Instruct | C.<br>tion Set Analys              |
| 2.1 Check (                                         |                                                                  | ime: 15   |               | ized <mark>⊙ Not</mark><br>Self Time <del>▼</del> |                                |        | nand line<br>ed by GUI |          | ed Loops          |           | Compiler Estimated Gain | Instruct | tion Set Analys                    |
| 2.1 Check (<br>Identify and<br>dependenci           | Loops                                                            |           | .47s Uectori  | Self Time▼                                        | Total 1                        |        |                        | Vecto    | ed Loops          | ;         |                         |          |                                    |
| <u>Identify</u> and<br>dependenci<br>reported pro   | Loops<br>i> <sup>(7</sup> ) <b>[lo</b><br>i> <sup>(7</sup> ) [lo |           | .47s Uectori  | Self Time▼                                        | Total 1                        | create | ed by GUI              | Vecto    | ed Loops          | ;         |                         |          | tion Set Analys<br>Data Types      |
| <u>ldentify</u> and dependenci                      | Loops<br>i> <sup>(7</sup> ) <b>[lo</b><br>i> <sup>(7</sup> ) [lo | •         | .47s Uectori  | Self Time▼<br>. 14.030s □                         | Total 1<br>14.03 os<br>15.015s | create | ed by GUI              | Vecto    | ed Loops          | ;         |                         |          | tion Set Analys Data Types Float64 |

Optimization Notice



# Next analyze how many times your loops are iterating and how many times they are called.

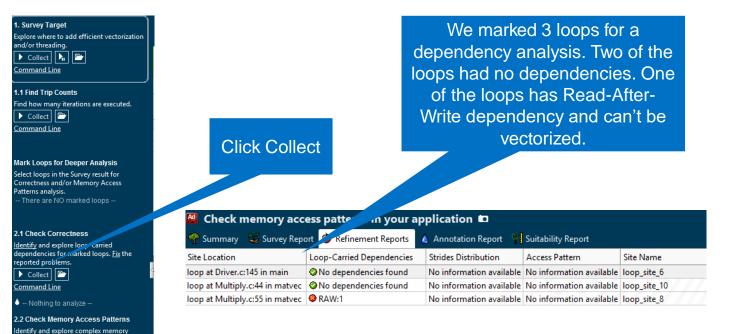
| r threading.                                                                  |   | Coll          | ect         | Trip Count | s         |           |           |            | ≪                        |                  |
|-------------------------------------------------------------------------------|---|---------------|-------------|------------|-----------|-----------|-----------|------------|--------------------------|------------------|
| ollect 🖍 🖻                                                                    |   |               |             | Median     | Min       | Max       | Call Co   | unt Ite    | eration Duration         |                  |
| hand Line                                                                     |   |               |             | 50         | 50        | 50        | 10100     | > 0000     | 0.0001s                  |                  |
| d Trip Counts                                                                 |   |               |             | 101        | 101       | 101       | 100000    | • 0        | 0.0001s                  |                  |
| ow many iteration are executed.                                               |   |               |             | 1000000    | 1000000   | 1000000   | 1         | <          | 0.0001s                  |                  |
| loops in the Survey result for                                                | ۵ | Vector Issues | Self Time - | Total Time | Trip Cour |           |           |            |                          | Loop Type        |
|                                                                               |   | 0             |             |            | Median    | Min       | Max       | Call Count |                          |                  |
| i> <sup>(5</sup> [loop at Multiply.c:55 in matvec]                            |   |               | 0.985s I    | 14.030s    | 50<br>101 | 50<br>101 | 50<br>101 | 10100000   | 0 < 0.0001s<br>< 0.0001s | Scalar<br>Scalar |
| i> O [loop at Multiply.c:44 in matvec]<br>i> O [loop at Driver.c:145 in main] |   |               | 0.9855      |            | 1000000   |           | 1000000   |            | < 0.0001s                | Scalar           |
| dencies for marked loops. <u>Fix</u> the                                      |   |               | 0.00051     | 15.0555    | 1000000   | 1000000   | 1000000   |            | < 0.0001S                | Scalar           |
| ed problems.                                                                  |   |               |             |            |           |           |           |            |                          |                  |
| nand Line                                                                     |   |               |             |            |           |           |           |            |                          |                  |
|                                                                               |   |               |             |            |           |           |           |            |                          |                  |
| iothing to analyze                                                            |   |               |             |            |           |           |           |            |                          |                  |
| othing to analyze<br>eck Memory Access Patterns                               |   |               |             |            |           |           |           |            |                          |                  |

### **Optimization Notice**

Copyright © 2020, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.

Command Line




## Specify loops for deeper analysis

| 🖉 Where should I add vectorization and/or threading parallelism? 🗖                       |                     |               |                      |           |           |                       |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|---------------------|---------------|----------------------|-----------|-----------|-----------------------|--|--|--|--|--|--|--|
| 🤗 Summary 😂 Survey Report 🤌 Refinement Reports 💧 Annotation Report 🦞 Suitability Report  |                     |               |                      |           |           |                       |  |  |  |  |  |  |  |
| Elapsed time: 15.47s 🕑 Vectorized 🖉 Not Vectorized 🖉 FILTER: All Modules 🗸 All Sources 🗸 |                     |               |                      |           |           |                       |  |  |  |  |  |  |  |
| Loops                                                                                    | ۵                   | Vector Issues | Self Time Total Time |           | Loop Туре | Why No Vectorization? |  |  |  |  |  |  |  |
| i> <sup>™</sup> [loop at Multiply.c:55 in matvec]                                        | ~                   |               | 14.030s 🗖            | 14.030s 💳 | Scalar    | vector dependence p   |  |  |  |  |  |  |  |
| i> 🖞 [loop at Multiply.c:44 in matvec]                                                   | ✓                   |               | 0.985s I             | 15.015s 📖 | Scalar    | outer loop was not a  |  |  |  |  |  |  |  |
| 🛿 🕲 [loop at Driver.c:145 in main]                                                       | <ul><li>✓</li></ul> |               | 0.000s               | 15.035s 🗔 | Scalar    | Ioop with function c  |  |  |  |  |  |  |  |



# **Deeper analysis**

Check dependencies



### Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.

problems.

Collect

accesses for marked loops. Fix the reported

6



# **Deeper analysis**

### Memory Access Pattern analysis

### 1. Survey Target Explore where to add efficient vectorization and/or threading. Collect n [m]

1.1 Find Trip Counts Find how many iterations are executed. Collect
Command Line

Mark Loops for Deeper Analysis Select loops in the Survey result for Correctness and/or Memory Access Patterns analysis. -- There are NO marked loops --

2.1 Check Correctness

<u>Identify</u> and explore loop-carried dependencies for marked loops. <u>Fix</u> the reported problems.



🌢 -- Nothing to analyze --

#### 2.2 Check Memory Access Patterns

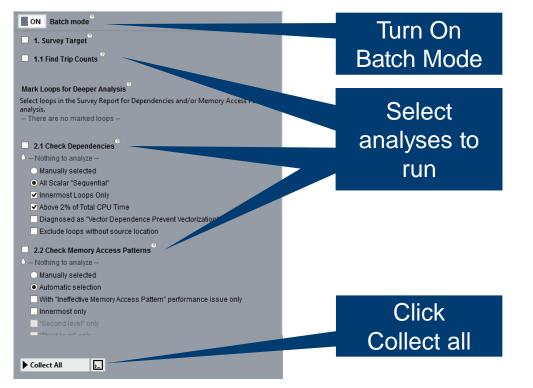
Identify and explore complex memory accesses for marked loops. Fix the reported problems.

Collect

| 🖉 Check memory access patterns in your appli 👘 n 🗖 |                           |        |                |                   |              |  |  |  |  |  |  |  |
|----------------------------------------------------|---------------------------|--------|----------------|-------------------|--------------|--|--|--|--|--|--|--|
| 🌳 Summary 🛛 📽 Survey Repo                          | ort 🍅 Refinement Reports  | 🍐 An   | ation Report   | 🖞 Suitability Rep | ort          |  |  |  |  |  |  |  |
| Site Location                                      | Loop-Carried Dependencies | Stride | s Distribution | Access Pattern    | Site Name    |  |  |  |  |  |  |  |
| loop at Driver.c:145 in main                       | No dependencies found     | 100    | 0% / 0% / 0%   | All unit strides  | loop_site_6  |  |  |  |  |  |  |  |
| loop at Multiply.c:44 in matvec                    | No dependencies found     | 85     | % / 15% / 0%   | Mixed strides     | loop_site_10 |  |  |  |  |  |  |  |
| loop at Multiply.c:55 in matvec                    | RAW:1                     | 74     | % / 26% / 0%   | Mixed strides     | loop_site_8  |  |  |  |  |  |  |  |

Stride distribution

| Memo        | Memory Access Patterns Report Correctness Report |        |                           |               |                 |                                    |           |  |  |  |  |
|-------------|--------------------------------------------------|--------|---------------------------|---------------|-----------------|------------------------------------|-----------|--|--|--|--|
| ID          | •                                                | Stride | Туре                      | Source        | Nested Function | Modules                            | Alignment |  |  |  |  |
| <b>⊞</b> P3 | i                                                |        | Parallel site information | Driver.c:145  |                 | matrix_vector_multiplication_c.exe |           |  |  |  |  |
| <b>⊞ P9</b> | 4-4                                              | 0      | Unit stride               | Driver.c:157  |                 | matrix_vector_multiplication_c.exe |           |  |  |  |  |
| ± P10       | •••                                              | 0      | Unit stride               | Multiply.c:39 | matvec          | matrix_vector_multiplication_c.exe |           |  |  |  |  |
| ± P12       | 4-4                                              | 0      | Unit stride               | Multiply.c:44 | matvec          | matrix_vector_multiplication_c.exe |           |  |  |  |  |
| ⊟ P14       | 4-4                                              | 0; 1   | Unit stride               | Multiply.c:45 | matvec          | matrix_vector_multiplication_c.exe |           |  |  |  |  |
| 43          |                                                  | int i  | , j;                      |               |                 |                                    |           |  |  |  |  |
| 45          | 5                                                | for (  | i = 0; i < size1; i       | .++) {        |                 |                                    |           |  |  |  |  |
| 46          |                                                  | b      | [i] = 0;                  |               |                 |                                    |           |  |  |  |  |


**Click Collect** 

### Optimization Notice



# **Batch Mode Workflow Saves Time**

Intel® Advisor - Vectorization Advisor



Run several analyses in batch as a single run

Contains pre-selected criteria for advanced analyses

### **Optimization Notice**



# Command Line: Intel® Advisor XE

Collecting survey and tripcounts

```
advixe-cl -collect survey -project-dir ./advi -- mult.exe
advixe-cl -collect tripcounts -project-dir ./advi -- mult.exe
Creating snapshot in command line, e.g:
advixe-cl --snapshot --project-dir ./advi \
--pack --cache-sources --cache-binaries -- /tmp/new_snapshot
Viewing the results
advixe-gui ./advi
advixe-cl --report survey --project-dir ./advi
```



# Advisor works with GCC and Microsoft Compilers

Adds bonus capabilities with the Intel Compiler

Advisor using GCC, Microsoft or Intel Compiler:

- Finds un-vectorized loops
- Analyze SIMD, AVX, AVX2, AVX-512
- Dependency Analysis safely force vectorization with a pragma
- Memory Access Pattern Analysis optimize stride and caching
- Trip Counts
- FLOPS metrics with masking
- Roofline Analysis balance memory vs. compute optimization

## Intel Compiler Adds:

- Usually better optimized vectorization
- Better compiler optimization messages

Intel Advisor with Intel Compiler Adds:

- Finds inefficiently vectorized loops and estimates performance gain
- Compiler optimization report messages displayed on the source
- More tips for improving vectorization
- Optimize for AVX-512 even without AVX-512 hardware



# Configurations for 2010-2017 Benchmarks

#### **Optimization Notice**

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microprocessors. Certain optimizations not specific to Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Performance measured in Intel Labs by Intel employees

### Platform Hardware and Software Configuration



|     |                                            | Unscaled<br>Core | Cores/ | Num | L1<br>Data | L2    | L3    |        | Memory    | Memory | H/W<br>Prefetchers | нт | Turbo |          | O/S           |                                |                         |
|-----|--------------------------------------------|------------------|--------|-----|------------|-------|-------|--------|-----------|--------|--------------------|----|-------|----------|---------------|--------------------------------|-------------------------|
|     | Platform                                   |                  |        |     |            |       |       | Memory | Frequency |        |                    |    |       | C States |               | Operating System               | <b>Compiler Version</b> |
| WSM | Intel® Xeon™<br>X5680 Processor            | 3.33 GHZ         | 6      | 2   | 32K        | 256K  | 12 MB | 48 MB  | 1333 MHz  | NUMA   | Y                  | Y  | Y     | Disabled | Fedora<br>20  | 3.11.10-301.fc20               | icc version 17.0.2      |
| SNB | Intel® Xeon™ E5<br>2690 Processor          | 2.9 GHZ          | 8      | 2   | 32K        | 256K  | 20 MB | 64 GB  | 1600 MHz  | NUMA   | Y                  | Y  | Y     | Disabled | Fedora<br>20  | 3.11.10-301.fc20               | icc version 17.0.2      |
| IVB | Intel® Xeon™ E5<br>2697v2 Processor        | 2.7 GHZ          | 12     | 2   | 32K        | 256K  | 30 MB | 64 GB  | 1867 MHz  | NUMA   | Y                  | Y  | Y     | Disabled | RHEL<br>7.1   | 3.10.0-229.el7.x86_64          | icc version 17.0.2      |
| HSW | Intel® Xeon™ E5<br>2600v3 Processor        | 2.2 GHz          | 18     | 2   | 32K        | 256K  | 46 MB | 128 GB | 2133 MHz  | NUMA   | Y                  | Y  | Y     | Disabled | Fedora<br>20  | 3.15.10-<br>200.fc20.x86_64    | icc version 17.0.2      |
| BDW | Intel® Xeon™ E5<br>2600v4 Processor        | 2.3 GHz          | 18     | 2   | 32K        | 256K  | 46 MB | 256 GB | 2400 MHz  | NUMA   | Y                  | Y  | Y     | Disabled | RHEL<br>7.0   | 3.10.0-123. el7.x86_64         | icc version 17.0.2      |
| BDW | Intel® Xeon™ E5<br>2600v4 Processor        | 2.2 GHz          | 22     | 2   | 32K        | 256K  | 56 MB | 128 GB | 2133 MHz  | NUMA   | Y                  | Y  | Y     | Disabled | CentOS<br>7.2 | 3.10.0-327. el7.x86_64         | icc version 17.0.2      |
| SKX | Intel® Xeon®<br>Platinum 81xx<br>Processor | 2.5 GHz          | 28     | 2   | 32K        | 1024K | 40 MB | 192 GB | 2666 MHz  | NUMA   | Y                  | Y  | Y     | Disabled | CentOS<br>7.3 | 3.10.0-<br>514.10.2.el7.x86_64 | icc version 17.0.2      |

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to <a href="http://www.intel.com/performance">http://www.intel.com/performance</a>

#### **Optimization Notice**

# Legal Disclaimer & Optimization Notice

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>www.intel.com/benchmarks</u>.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

### **Optimization Notice**

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

### **Optimization Notice**



Software