
Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization Optimization

Klaus-Dieter Oertel

Intel IAGS

HLRN User Workshop, 3-6 Nov 2020

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Xeon® Processor

64-bit
5100

series

5500

series

5600

series
E5-2600

E5-2600

V2

E5-2600

V3

E5-2600

V4

Platinum

8180

Core(s) 1 2 4 6 8 12 18 22 28

Threads 2 2 8 12 16 24 36 44 56

SIMD Width 128 128 128 128 256 256 256 256 512

Intel® Xeon Phi™
processor

Knights Landing

72

288

512

*Product specification for launched and shipped products available on ark.intel.com.

Changing Hardware Impacts Software
More Cores → More Threads → Wider Vectors

2

High performance software must be both
▪ Parallel (multi-thread, multi-process)

▪ Vectorized

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Vectorize & Thread or Performance Dies
Threaded + Vectorized can be much faster than either one alone

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific

computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in

fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

Configurations for 2007-2016 Benchmarks

at the end of this presentation

3

The Difference

Is Growing

With Each New

Generation of

Hardware

2012
Intel® Xeon™

Processor

E5-2600
formerly codenamed

Sandy Bridge

2013
Intel® Xeon™

Processor

E5-2600 v2
formerly codenamed

Ivy Bridge

2010
Intel® Xeon™

Processor

X5680
formerly codenamed

Westmere

2017
Intel® Xeon® Platinum

Processor

81xx
formerly codenamed

Skylake Server

2014
Intel® Xeon™

Processor

E5-2600 v3
formerly codenamed

Haswell

2016
Intel® Xeon™

Processor

E5-2600 v4
formerly codenamed

Broadwell

Vectorized
&
Threaded

Threaded

Vectorized
Serial

130x

“Automatic” Vectorization Not Enough
Explicit pragmas and optimization often required

http://www.intel.com/performance

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Faster Code Faster with Data Driven Design
Intel® Advisor – Vectorization Optimization and Thread Prototyping

15

Breakthrough for Threading Design:
▪ Quickly prototype multiple options

▪ Project scaling on larger systems

▪ Find synchronization errors before
implementing threading

▪ Design without disrupting development

Faster Vectorization Optimization:

▪ Vectorize where it will pay off most

▪ Quickly ID what is blocking vectorization

▪ Tips for effective vectorization

▪ Safely force compiler vectorization

▪ Optimize memory stride

http://intel.ly/advisor-xePart of Intel® Parallel Studio for Windows* and Linux*
Less Effort, Less Risk and More Impact

Focus today only on

vectorization

http://intel.ly/advisor-xe

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Faster Vectorization Optimization:

▪ Vectorize where it will pay off most

▪ Quickly ID what is blocking vectorization

▪ Tips for effective vectorization

▪ Safely force compiler vectorization

▪ Optimize memory stride

The data and guidance you need:

▪ Compiler diagnostics +

Performance Data + SIMD efficiency

▪ Detect problems & recommend fixes

▪ Loop-Carried Dependency Analysis

▪ Memory Access Patterns Analysis

Intel® Advisor – Vectorization Advisor
Get breakthrough vectorization performance

Optimize for

AVX-512 with

or without

access to

AVX-512

hardware

http://intel.ly/advisor-xePart of Intel® Parallel Studio XE

http://intel.ly/advisor-xe

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Summary View: Plan Your Next Steps

What can I

expect to gain?

Where do I

start?

Amdahl’s law for

parallelization == vectorization

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Amdahl’s law

𝑆𝑡𝑜𝑡𝑎𝑙 =
100%

100% − 𝑝 +
𝑝
𝑠𝑝

S = speedup (in parallelized part or total)

P = proportion of execution time that benefits

from parallelization

Example: P=80%, sp=16 [AVX-512] => Stotal=4

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Amdahl’s law

2x speedup

NOT 2x speedup

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Amdahl’s law

2x speedup

NOT 2x speedup
0

2

4

6

8

10

12

14

16

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

stotal

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
22

The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

Filter by which loops

are vectorized!

Focus on

hot loops

What vectorization

issues do I have?

How efficient

is the code?

What prevents

vectorization?

Which Vector instructions

are being used?

Trip Counts

Get Faster Code Faster!

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

What is the roofline model ?
Do you know how fast you should run ?

26

Comes from Berkeley

Performance is limited by equations/implementation & code generation/hardware

2 hardware limitations

▪ PEAK Flops

▪ PEAK Bandwidth

The application performance is bounded by hardware specifications

Gflop/s= 𝒎𝒊𝒏 ቊ
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

Arithmetic Intensity

(Flops/Bytes)

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Platform PEAK FlopS
How many floating point operations per second

27

Theoretical value can be computed by specification
Example with 2 sockets Intel® Xeon® Processor E5-2697 v2

PEAK FLOP = 2 x 2.7 x 12 x 8 x 2 = 1036.8 Gflop/s

More realistic value can be obtained by running Linpack
=~ 930 Gflop/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

Number of sockets

Core Frequency

Number of cores

Number of single precision

element in a SIMD register

1 port for addition, 1 for multiplication

Gflop/s= 𝒎𝒊𝒏 ቊ
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Platform PEAK bandwidth
How many bytes can be transferred per second

28

Theoretical value can be computed by specification
Example with 2 sockets Intel® Xeon® Processor E5-2697 v2

PEAK BW = 2 x 1.866 x 8 x 4 = 119 GB/s

More realistic value can be obtained by running Stream
=~ 100 GB/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

Number of sockets

Memory Frequency

Byte per channel

Number of mem channels

Gflop/s= 𝒎𝒊𝒏 ቊ
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Drawing the Roofline
Defining the speed of light

29

Gflops/s

AI [Flop/B]

1036

2 sockets Intel® Xeon® Processor E5-2697 v2

Peak Flop = 1036 Gflop/s

Peak BW = 119 GB/s
Gflop/s= 𝒎𝒊𝒏 ቊ

𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Drawing the Roofline
Defining the speed of light

30

Gflops/s

AI [Flop/B]

1036

Gflop/s= 𝒎𝒊𝒏 ቊ
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

2 sockets Intel® Xeon® Processor E5-2697 v2

Peak Flop = 1036 Gflop/s

Peak BW = 119 GB/s

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Drawing the Roofline
Defining the speed of light

31

Gflops/s

AI [Flop/B]
8.7

1036

Gflop/s= 𝒎𝒊𝒏 ቊ
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

2 sockets Intel® Xeon® Processor E5-2697 v2

Peak Flop = 1036 Gflop/s

Peak BW = 119 GB/s

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

What is the performance boundary?
Manual way to do it

32

Manual counting on matrix/matrix multiplication

add = N * N * N #Read = 3 * N * N * 4 bytes

mul = N * N * N #Write = N * N * 4 bytes

𝐴𝐼 =
2𝑁3

16𝑁2
=

1

8
𝑁

for(i=0; i<N; i++)

for(j=0; j<N; j++)

for(k=0; k<N; k++)

c[i][j] = c[i][j] + a[i][k] * b[k][j]

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Compute the maximum performance
BW * Arithmetic Intensity

33

Gflops/s

AI [Flop/B]
8.7

1036

For sgemm

AI = 1/8 N

If N = 8, AI = 1

1

119

Gflop/s= 𝒎𝒊𝒏 ቊ
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

If N = 8, sgemm should not be able

to perform better than 119 GFlop/s

on a 2 sockets Ivy Bridge

2 sockets Intel® Xeon® Processor E5-2697 v2

Peak Flop = 1036 Gflop/s

Peak BW = 119 GB/s

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

And NOW?
How to get better performance?

34

Gflops/s

8.7

1036

1

119

Optimize memory access

Vectorization + threading

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
36

What is a Roofline Chart?

A Roofline Chart plots application performance against hardware limitations.

• Where are the bottlenecks?

• How much performance is

being left on the table?

• Which bottlenecks can be

addressed, and which should

be addressed?

• What’s the most likely cause?

• What are the next steps?
Roofline first proposed by University of California at Berkeley:

Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009

Cache-aware variant proposed by University of Lisbon:

Cache-Aware Roofline Model: Upgrading the Loft, 2013

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
37

Roofline Metrics

Roofline is based on FLOPS and Arithmetic Intensity (AI).

• FLOPS: Floating-Point Operations / Second

• Arithmetic Intensity: FLOP / Byte Accessed
Low AI High AI

Runs system benchmarks and collects timing data.

Shortcut to run Survey followed by Trip Counts + FLOPs

Collects memory traffic and FLOP data.

Must be run separately due to higher overhead that

would interfere with timing measurements.

Collecting this

information in

Intel® Advisor

requires two

analyses.

SpMV FFTs N-body

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Ultimately Compute-

Bound

Ultimately Memory-

Bound

40

Ultimate Performance Limits

FLOPS

Arithmetic Intensity

FLOP/Byte

Performance cannot exceed the

machine’s capabilities, so each loop is

ultimately limited by either compute or

memory capacity.

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Vector with FMAs

Vector

Scalar

41

Sub-Roofs and Current Limits

FLOPS

Arithmetic Intensity

FLOP/Byte

Additional

roofs can be

plotted for

specific

computation

types or

cache levels.

These sub-

roofs can be

used to help

diagnose

bottlenecks.

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
42

The Intel® Advisor Roofline Interface

• Roofs are based on benchmarks

run before the application.

• Roofs can be hidden,

highlighted, or adjusted.

• Intel® Advisor has size- and

color-coding for dots.

• Color code by duration or

vectorization status

• Categories, cutoffs, and visual

style can be modified.

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
43

Identifying Good Optimization Candidates

Focus optimization

effort where it makes

the most difference.

• Large, red loops

have the most

impact.

• Loops far from the

upper roofs have

more room to

improve.

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
44

Identifying Potential Bottlenecks

Final roofs do apply;

sub-roofs may apply.

• Roofs above indicate

potential bottlenecks

• Closer roofs are the

most likely suspects

• Roofs below may

contribute but are

generally not primary

bottlenecks

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
46

Roofline with Call Stacks

Advisor 2018 Update 1 added call stacks to Roofline.

• Granularity of data can be adjusted.

• Reveals inefficiencies that originate

higher in the call chain.

• More accurate view of functions or

loops that behave differently under

different circumstances

• Differentiates between instances

with different call chains.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
47

Reading the Roofline with Call Stacks
Visualizing the Call Chain

Arrows indicate relationships between dots.

X is called directly by Y.

X directly calls Z

The call stack displays the call chain for the

selected loop. Clicking an entry causes it to

flash on the Roofline for easy identification.

Y

Z

X

X

The selected

yellow dot was

called by the gray

dot, and it calls

the red and green

dots.

Selecting the

green dot shows

that it is called by

the yellow dot,

and doesn’t call

anything itself.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
48

Self Data vs Total Data

The original Roofline used only self data: only work done directly is recorded.

The Roofline with call stacks uses both self data and total data, which includes

work done in functions or loops called as well as work done directly.

for (int i = 0; i < 10; i++)

{

X = i * 24 + 179.4 - i;

Y = (i + 18) / 72.8;

foobar();

for (int j = 0; j < 3; j++)

{

Z = i * j + 7;

}

}

Self

Total

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
49

Reading the Roofline with Call Stacks
Expanding and Collapsing Outer Loops

Collapsing and expanding dots switches between self- and total-data mode.

Dots with no self data are

grayed out when expanded

and in color when collapsed.

Dots that have self data have

the appearance and location

based on it when expanded,

with a halo of the size related

to their total data.

When collapsed, their appearance and

location changes to reflect the total data.

Collapse

Collapse

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Get Roofline data using GUI

55

Command line

created by GUI

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Get roofline data using command line. Example:

57

> source advixe-vars.sh

1st method:

> advixe-cl -collect roofline -project-dir ./your_project -- <your-executable-

with-parameters>

2nd method (more flexible):

> advixe-cl -collect survey -project-dir ./your_project -- <your-executable-

with-parameters>

> advixe-cl -collect tripcounts -flop -project-dir ./your_project -- <your-

executable-with-parameters>

> advixe-gui ./your_project

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Running Intel Advisor XE on a cluster

58

Example: Collect from middle rank of 3x3x3 cube of processes:

mpirun -n 27 advixe-cl -collect survey-project-dir ./my_proj ./your_app

mpirun -n 13 ./your_app \

: -n 1 advixe-cl -collect survey -project-dir ./my_proj ./your_app \

: -n 13 ./your_app

Intel MPI-specific (adding corner rank and middle surface rank):

mpirun –n 27 \

–gtool “advixe-cl –collect survey --project-dir ./my_proj :1,5,14” ./your_app

or: I_MPI_GTOOL=“advixe-cl –collect survey --project-dir ./my_proj :1,5,14”

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
65

▪ FLOPS by loop and function

▪ All recent Intel processors

(not co-processors)

▪ Instrumentation (count FLOPs) plus

sampling (time with low overhead)

▪ Adjusted for masking

with AVX-512 processors

Precise Repeatable FLOPS Metrics
Intel® Advisor – Vectorization Optimization

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
67

Getting FLOP/S in Advisor

FLOP/S

= #FLOP/Seconds

Seconds #FLOP
- and Mask Utilization

- and #Bytes

Step 1: Survey
- Not intrusive, sampling based, ~5-10%

overhead

- Time/Performance-representative

Step 2: Trip counts+FLOPS
- Precise, instrumentation based

- Physically count Num-Instructions

- Possible to do all types of dynamic

analysis including mask register tracking

etc

Intel Confidential

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
68

Why Mask Utilization is Important?

for(i = 0; i <= MAX; i++)

c[i] = a[i] + b[i];

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

100%

#FLOP (MAX = 8): 8

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
69

Why Mask Utilization Important?

for(i = 0; i <= MAX; i++)

if (cond(i))

c[i] = a[i] + b[i];

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

cond[i] 1010 1101

3 elements suppressed

Mask Utilization = 5/8

62.5%

#FLOP (MAX = 8): 5

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
74

Spend your time in the most efficient place!

A typical vectorized loop consists of…
Main vector body

▪ Fastest among the three!

Optional peel part

▪ Used for the unaligned references in your loop.
Uses Scalar or slower vector

Remainder part

▪ Due to the number of iterations (trip count) not being divisible by vector length. Uses Scalar or
slower vector.

Larger vector register means more iterations in peel/remainder

▪ Make sure you align your data! (and you tell the compiler it is aligned!)

▪ Make the number of iterations divisible by the vector length!

Fastest!
Less

Fast

Less

Fast

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
75

What are peels and remainders?

Intel Confidential

2 4

6 8

10 12

14 16

18

3

7

11

15

5

9

13

17

1

Vectorized

Body

Peel

Remainder

// xAVX

// 256 bits wide regs

// holds 4 x 64bit vals

void Func(double *pA)

{

for (int i=0; i<19;i++)

pA[i] = …;

}

0

3
2

 b
y
te

 b
o

u
n

d
a

ry

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
79

Don’t Just Vectorize, Vectorize Efficiently
See detailed times for each part of your loops. Is it worth more effort?

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Click to see recommendation

Advisor shows hints to move

iterations to vector body.

Get Specific Advice For Improving Vectorization
Intel® Advisor – Vectorization Advisor

80

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Critical Data Made Easy
Loop Trip Counts

81

Check

actual trip

counts

Loop is iterating

101 times but

called > million

times

Since the loop is

called so many

times it would be

a big win if we

can get it to

vectorize.

Knowing the time

spent in a loop is not

enough!

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that slow-down your Vectorized code

83

for (i = 1; i < nx; i++) {

sumx = sumx +

serialized_func_call(x, y, xp);

}

2. Serialized or “sub-optimal” function calls

void doit(int *a, int *b, int unknown_small_value)

{

for(int i = 0; i < unknown_small_value; i++)

a[i] = z*b[i];

}

3. Small trip counts not multiple of VL

4. Branchy codes, outer vs. inner loops

1.B Memory sub-system Latency / Throughput

for(i = 0; i <= MAX; i++) {

if (D[i] < N)

do_this(D);

else if (D[i] > M)

do_that();

//…

}

void scale(int *a, int *b)

{

for (int i = 0; i < VERY_BIG; i++){

c[i] = z * a[i][j];

b[i] = z * a[i];

}

}

5. MANY others: spill/fill, fp accuracy trade-offs,

FMA, DIV/SQRT, Unrolling, even AVX throttling..

1.A. Indirect memory access

for (i=0; i<N; i++)

A[B[i]] = C[i]*D[i]

i ≠ j ➔ B[i] ≠ B[j]

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that slow-down your Vectorized code

85

for (i = 1; i < nx; i++) {

sumx = sumx +

serialized_func_call(x, y,

xp);

}

2. Serialized or “sub-optimal”

function calls

void doit(int *a, int *b, int

unknown_small_value)

{

for(int i = 0; i < unknown_small_value;

i++)

a[i] = z*b[i];

}

3. Small trip counts not multiple of VL

4. Branchy codes, outer vs. inner loops
1.B Memory sub-system Latency /

Throughput

for(i = 0; i <= MAX; i++) {

if (D[i] < N)

do_this(D);

else if (D[i] > M)

do_that();

//…

}

void scale(int *a, int *b)

{

for (int i = 0; i < VERY_BIG; i++)

c[i] = z * a[i][j];

b[i] = z * a[i];

}

5. MANY others: spill/fill, fp accuracy trade-offs,

FMA, DIV/SQRT, Unrolling

1.A. Indirect memory access

for (i=0; i<N; i++)

A[B[i]] = C[i]*D[i]

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
87

Vector Efficiency: All The Data In One Place
My “performance thermometer”

Survey: Find out if your code is “under vectorized” and why

Achieved

Efficiency

Original (scalar)

code efficiency.

Corresponds

to 1x speed-up.

Upper bound:

100%

efficiency

4x gain

(VL=4)

• Auto-vectorization: affected <3% of code

• With moderate speed-ups

• First attempt to simply put #pragma simd:

• Introduced slow-down

• Look at Vector Issues and Traits to find out why

• All kinds of “memory manipulations”

• Usually an indication of “bad” access pattern

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
88

Advisor Survey: Focus + Characterize.
Focus and order vectorized loops

• Efficiency – my performance

thermometer

• Recommendations – get tip on

how to improve performance

• (also apply to scalar loops)

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Loop Analytics
Get detailed information about your loops

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Factors that prevent Vectorizing your code

93

1. Loop-carried dependencies

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp);

}

2. Function calls (incl. indirect)

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

3. Loop structure, boundary condition

4 Outer vs. inner loops

1.A Pointer aliasing (compiler-specific)

for(i = 0; i <= MAX; i++) {

for(j = 0; j <= MAX; j++) {

D[j][i] += 1;

}

}

void scale(int *a, int *b)

{

for (int i = 0; i < 1000; i++)

b[i] = z * a[i];

}

DO I = 1, N

A(I + M) = A(I) + B(I)

ENDDO

And others……

5. Cost-benefit (compiler specific..)

M >= SIMDlength?

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Is It Safe to Vectorize?
Loop-carried dependencies analysis verifies correctness

94

Vector Dependence

prevents

Vectorization!

Select loop for

Correct

Analysis and

press play!

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
95

Data Dependencies – Tough Problem #1
Is it safe to force the compiler to vectorize?

for (i=0;i<N;i++) // Loop carried dependencies!

A[i] = A[i-M]*С[i]; // Need to check if it is safe to force

// the compiler to vectorize!

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
96

Correctness – Is It Safe to Vectorize?
Loop-carried dependencies analysis

Received recommendations to force vectorization of a

loop:

1. Mark-up loop and check for REAL dependencies

2. Explore dependencies with code snippets

In this example 3 dependencies were detected:

▪ RAW – Read After Write

▪ WAR – Write After Read

▪ WAW – Write After Write

This is NOT a good candidate to force

vectorization!

Detected

dependencies

Source lines with Read and

Write accesses detected

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Memory access patterns

100

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

Unit strided (contiguous):

A[7]

A[0] A[1] A[2] A[3]

A[0].x

Constant strided:

A[0].y A[1].x A[1].y A[2].x A[2].y

A[0].x A[1].x A[2].x A[3].x

A[3] A[0] A[1]

Arbitrary access:

A[2]

A[0] A[1] A[2] A[3]

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Memory access patterns

101

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

Unit strided (contiguous):

A[7]

A[0] A[1] A[2] A[3]

A[0].x

Constant strided:

A[0].y A[1].x A[1].y A[2].x A[2].y

A[0].x A[1].x A[2].x A[3].x

A[3] A[0] A[1]

Arbitrary access:

A[2]

A[0] A[1] A[2] A[3]

Extract/insert, shuffle,

gather/scatter instructions

are used

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Run Memory Access Patterns analysis,

just to check how memory is used in the

loop and the called function

Select loops of

interest

102

Improve Vectorization
Memory Access pattern analysis

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Irregular access patterns decreases performance!
Gather profiling

106

Run Memory Access Pattern

Analysis

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
111

Enhanced Memory Access Analysis
Are you bandwidth or compute limited?

Measure Footprint

▪ Compare to cache size

Does it fit in L2 cache?

Variable References

▪ Map data to variable names

for easier analysis

Gather/Scatter

▪ Detect unneeded

gather/scatters that reduce

performance

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

References

124

Roofline model proposed by Williams, Waterman, Patterson:

http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf

“Cache-aware Roofline model: Upgrading the loft” (Ilic, Pratas, Sousa, INESC-

ID/IST, Thec Uni of Lisbon)

http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
125

Additional Material

Intel® Advisor – Threading Design & Prototyping:

▪ Product page – overview, features, FAQs, support…

▪ Training materials – movies, tech briefs, documentation…

▪ Evaluation guides – step by step walk through

▪ Reviews

Additional Analysis Tools:

▪ Intel® VTune Amplifier – performance profiler

▪ Intel® Inspector - memory and thread checker / debugger

Additional Development Products:

▪ Intel® Software Development Products

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe-support/training
http://software.intel.com/en-us/evaluation-guides/
https://software.intel.com/en-us/intel-advisor-xe/reviews
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-sdp-home/
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-sdp-home/

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Before you analyze
Create Project

128

• File->New->Project

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Analyze what loops you are spending your time in and how they have

been vectorized!

129

Click Collect

Survey Report

Command line

created by GUI

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Next analyze how many times your loops are iterating and how many

times they are called.

131

Click

Collect

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Specify loops for deeper analysis

132

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Deeper analysis
Check dependencies

133

Click Collect

We marked 3 loops for a

dependency analysis. Two of the

loops had no dependencies. One

of the loops has Read-After-

Write dependency and can’t be

vectorized.

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Deeper analysis
Memory Access Pattern analysis

134

Click Collect

Stride distribution

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Batch Mode Workflow Saves Time
Intel® Advisor - Vectorization Advisor

135

Run several analyses in batch

as a single run

Contains pre-selected criteria

for advanced analyses

Turn On

Batch Mode

Click

Collect all

Specify

analysis

types to run

Specify

analysis

types to run

Select

analyses to

run

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
136

Collecting survey and tripcounts

advixe-cl –collect survey –project-dir ./advi -- mult.exe

advixe-cl –collect tripcounts –project-dir ./advi -- mult.exe

Creating snapshot in command line, e.g:

advixe-cl --snapshot --project-dir ./advi \
--pack --cache-sources --cache-binaries -- /tmp/new_snapshot

Viewing the results

advixe-gui ./advi

advixe-cl –report survey –project-dir ./advi

Command Line: Intel® Advisor XE

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
138

Advisor using

GCC, Microsoft or Intel Compiler:

▪ Finds un-vectorized loops

▪ Analyze SIMD, AVX, AVX2, AVX-512

▪ Dependency Analysis – safely force

vectorization with a pragma

▪ Memory Access Pattern Analysis -

optimize stride and caching

▪ Trip Counts

▪ FLOPS metrics with masking

▪ Roofline Analysis – balance memory vs.

compute optimization

Intel Compiler Adds:

▪ Usually better optimized vectorization

▪ Better compiler optimization messages

Intel Advisor with Intel Compiler Adds:

▪ Finds inefficiently vectorized loops and

estimates performance gain

▪ Compiler optimization report messages

displayed on the source

▪ More tips for improving vectorization

▪ Optimize for AVX-512 even without AVX-

512 hardware

Advisor works with GCC and Microsoft Compilers
Adds bonus capabilities with the Intel Compiler

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel

microprocessors for optimizations that are not unique to Intel microprocessors.

These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with

Intel microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the

applicable product User and Reference Guides for more information regarding

the specific instruction sets covered by this notice. Notice revision #20110804

Performance measured in Intel Labs by Intel employees

Configurations for 2010-2017 Benchmarks

139

Platform

Unscaled

Core

Frequency

Cores/

Socket

Num

Sockets

L1

Data

Cache

L2

Cache

L3

Cache Memory

Memory

Frequency

Memory

Access

H/W

Prefetchers

Enabled

HT

Enabled

Turbo

Enabled C States

O/S

Name Operating System Compiler Version

Intel® Xeon™

X5680 Processor
3.33 GHZ 6 2 32K 256K 12 MB 48 MB 1333 MHz NUMA Y Y Y Disabled

Fedora

20
3.11.10-301.fc20 icc version 17.0.2

Intel® Xeon™ E5

2690 Processor
2.9 GHZ 8 2 32K 256K 20 MB 64 GB 1600 MHz NUMA Y Y Y Disabled

Fedora

20
3.11.10-301.fc20 icc version 17.0.2

Intel® Xeon™ E5

2697v2 Processor
2.7 GHZ 12 2 32K 256K 30 MB 64 GB 1867 MHz NUMA Y Y Y Disabled

RHEL

7.1
3.10.0-229.el7.x86_64 icc version 17.0.2

Intel® Xeon™ E5

2600v3 Processor
2.2 GHz 18 2 32K 256K 46 MB 128 GB 2133 MHz NUMA Y Y Y Disabled

Fedora

20

3.15.10-

200.fc20.x86_64
icc version 17.0.2

Intel® Xeon™ E5

2600v4 Processor
2.3 GHz 18 2 32K 256K 46 MB 256 GB 2400 MHz NUMA Y Y Y Disabled

RHEL

7.0
3.10.0-123. el7.x86_64 icc version 17.0.2

Intel® Xeon™ E5

2600v4 Processor
2.2 GHz 22 2 32K 256K 56 MB 128 GB 2133 MHz NUMA Y Y Y Disabled

CentOS

7.2
3.10.0-327. el7.x86_64 icc version 17.0.2

Intel® Xeon®

Platinum 81xx

Processor

2.5 GHz 28 2 32K 1024K 40 MB 192 GB 2666 MHz NUMA Y Y Y Disabled
CentOS

7.3

3.10.0-

514.10.2.el7.x86_64
icc version 17.0.2

Platform Hardware and Software Configuration

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific

computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully

evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

WSM

SNB

IVB

HSW

BDW

BDW

SKX

http://www.intel.com/performance

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.

These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use

with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable

product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

140

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and

"Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark

and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause

the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the

performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL

PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in

the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

