Software

INTEL" ADVISOR

Vectorization Optimization

Klaus-Dieter Oertel
Intel IAGS
HLRN User Workshop, 3-6 Nov 2020

Changing Hardware Impacts Software
More Cores = More Threads - Wider Vectors

Xeon Phi™ Processor

e ———

Intel® Xeon Phi™

processor

Intel® Xeon® Processor

. 5100 (51510]0] 5600 E5-2600 E5-2600 E5-2600 Platinum :]
- - Knights L
G4-DIt EES series series = A\ V3 V4 8180 nights Landing
Core(s) 1 2 4 6 8 12 18 22 28
Threads 2 2 8 12 16 24 36 44 56 288
SIMD Width 128 128 128 128 256 256 256 256 512 512

High performance software must be both

= Parallel (multi-thread, multi-process)
= \ectorized

*Product specification for launched and shipped

Optimization Notice

products available on ark.intel.com.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorize & Thread or Performance Dies

Threaded + Vectorized can be much faster than either one alone

< \/ectorized

A

5 . - N Threaded

¢ ‘Automatic” Vectorization Not Enough

8 T Explicit pragmas and optimization often required The Difference

5 Is Growing

3% With Each New

ET™ 130x Generation of

£ «— Threaded Hardware
W+ Vectorized

' +— Serial

2010 2012 2013 2014 2016 2017

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific Configurations for 2007-2016 Benchmarks
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in i E & s PresEm e
fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance p

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

ADVISOR OVERVIEW

Faster Code Faster with Data Driven Design

Intel® Advisor — Vectorization Optimization and Thread Prototyping

Faster Vectorization Optimization: = Whrs shoud sz nderfresdn ol

rts & Annotstion Report] Suitability Repart

= V t h t ” ﬂ: t Elapsed time: 54445 | | Vectorized || Mot Vectarize o FILTER: | &ll Modules v [l sources v a
ectorize where it will pay off mos E—
Self | Total | Trip
. Function Call Sites and Loop | & | @ Wector Issues S || Loop Type Wy No ectorzationd | — = itdency

[] QUICkIy ID What |S blOCklng VeCtorlzatlon £+ 0 [loap at st_algo.heA740i. [017051 017051 Scalar B non-vectariza blel ..

EE [lowp at loopstl.cpp:2440... @ 2 Ineffective peeled.. 017051 0170s| 124 Collapse Collapse VX
; loopstlcppiz.. [015051 015051 12 Vertorize 8 A
| |

Tips for effective vectorization - o g) b1 o & i

i» O [loop at loapstl.cpp:7900,, [0170s1 017051 500 Scalar @ vectorization oS3,
[loop at loopstl.cpp:35 ... ¢ 1High vector regi... 0.160s| 0.160s| 12 Expand Expand Avx 6% v
<

Safely force compiler vectorization
Optimize memory stride

Breakthrough for Threading Design: Lo i T

Avg. Number of Iterations Avqg. Iteration (Task)

= Quickly prototype multig _ " "
= Project scaling on largeil Focus tOday Only on o JM)

= Find synchronization err vectorization -

implementing threading
= Design without disrupting development BN

Target CPU Count

Less Effort, Less Risk and More Impact

Part of Intel® Parallel Studio for Windows* and Linux* http://intel.ly/advisor-xe

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://intel.ly/advisor-xe

Intel® Advisor — Vectorization Advisor

Get breakthrough vectorization performance

Faster Vectorization Optimization:

The data and guidance you need:

= \ectorize where it will pay off most = Compiler diagnostics +

= Quickly ID what is blocking vectorization Performance Data + SIMD efficiency

= Tips for effective vectorization = Detect problems & recommend fixes

= Safely force compiler vectorization = Loop-Carried Dependency Analysis

= Optimize memory stride = Memory Access Patterns Analysis

Elapsed time: 70,205 O Vectorizec — e [Q] L.

FILTER:| All Modules ~ || AllSources | [T Rt Ia et INTEL ADVISOR 2018 Optlmlze fOf

,Summar_',r xSur\rey&'.Rooﬂine @Reﬁnementkepoﬂs AVX'512 Wlth

el 5] Function Calites and Loops | 8| ¥ /<1 soi Timew T o e ot ::zzjo"E:;::q o |VL me Mo or without

E [loop in 5252 at loops90.£:1172] @ 1Possible.. 3.129s (RO 3.129s Vectorized .. 0.1911 0.115 & 1 vectorizat... AVX2 17% 136x 48 99:6;1;1 access to
5/(5 [loop in 52101 at loops00.£:1749] @ 2 Possible... 2765 [DCHGINN 2.765s Scalar 01421 |0.067 | & vectorizatio.. 12 AVX-512
i@ [loop in s442_SompSparallel_for..| [] | @ 1Ineffecti.. 1.492< [N 1.4925 Vectorized+.. 0586 | 0.165 ave [4% J109c 8 3013
5 f _swml_sinf8_9 1.108s [ESE0 11085 Vector Funct.. 39110 0.156 AVX2 hardware
[loop in 5353 at loops@0.£:2381] (] % 1Possible.. 0.929< 22 0.989s Vectorized (.. 20231 0134 ave [&% J2ex 8 &4

Part of Intel® Parallel Studio XE

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

http://intel.ly/advisor-xe

http://intel.ly/advisor-xe

Summary View: Plan Your Next Steps

| Summary of predicted parallel behavior & Intel Advisor XE 2016

FTer: [T v J i sources v

What can |

Number of CPU Threads: 1

G\ expect to gain?

ized loops 811 (N 57.6%
1155 B 24%
(3} Vectorization Gain/Efficiency”
Vectorized Loops Gain/Efficiency 264x e .
Program Theoretical Gain 243¢ _
.]
© Toumecmmngiops” @ Vectorization Gain/Efficiency-
it s Vectorized Loops Gain/Efficiency 2.64x [~B6%
Multiphy.:49 0.5234s
Multiply.c:19 0.40885 R R
et Programn Theoretical Gain 2.43x

(&) Refinement analysis data”

These loops were analyzed for memory access pattems an

@ Top time-consuming Innps':?'

Loop Souss _agn Self Time? Total Time?

5.62565 562565
243805
51490

011505 Where do |
start?

matver Litiply.c 7

Amdahl’s law for ﬁ Ejszzs
parallelization == vectorization _.. 011500

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Amdahl’s law

100%

(100% — p) + SE
p

S = speedup (in parallelized part or total)

Stotal —

P = proportion of execution time that benefits
from parallelization

Example: P=80%, s,=16 [AVX-512] => S, =4

Amdahl’s law

2X speedup

NOT 2x speedup

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Amdahl’s law

Stotal
I 1]
14

12

10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

The Right Data At Your Fingertips

Get all the data you need for high impact vectorization

Filter by which loops

Trip Counts What prevents

are vectorized! vectorization?
™| Where shoui. vectorization and/or threading parallelism? & Intel Advisor XE 2016
Refinement Reports & Annotation Report
Elapsed time: 54.44s | | ‘ectorized Mot Vectorized FILTER: | Al Modules v | | AINSources Q
Trip Wectorized Loops 2
Function Call Sites and Loops & | @ Vector lssues Self Tirnew | Total Time C Loop Type Why Mo Vectarization? —
ounts Vecto...| Efficiency |Vect0r L.
30 [loop at stl_algo.hed 740 in stdvte .. [017051 01701 Scalar & non-vectarizable loop ins ...
EE [loop atjoopstl.cppi2449in 5234] @ 2 Imeffective peeledfrern .. 017051 0170s1 124 Collapse Collapse AN 4
iU [loof at loopstl.cppr2dd@in s .. [] 015051 0.150:1 12 Wectorized (Body) A 4
1O [logl at loopstl.cpp:2449in s .. [] 0.0205 | 0.020s1 4 Rernainder
35O [loog loapstl.cpp: 7900 in wvas_] | [] 0170s 1 0170s1 500 Scalar B vectorization possible but... 4
loopstl.cpp:3500 in 52... % 1High vector register ... 0.160s | 0.160s| 12 Expand Expand AYX 8
loapstl.cpp:3891 in 5279] ¥ 2 Ineffective peeledfrem., 0.150s 015051 1254 Expand Expand B
loopsthcppi62dS in s414_] 015051 015051 12 Expand Expand A
i st_nurmeric.hi247 inostd ¥ 1Assurned dependency.. 015051 0.150s1 49 Scalar & vector dependence preve v

Focus on What vectorization Which Vector instructions How efficient

hot loops issues do | have? are being used? Is the code?

Get Faster Code Faster!

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

THE ROOFLINE MODEL

WHAT IS THE ROOFLINE MODEL ?

Do you know how fast you should run ?

Comes from Berkeley

Performance is limited by equations/implementation & code generation/hardware
2 hardware limitations

= PEAK Flops

= PEAK Bandwidth

The application performance is bounded by hardware specifications

Arithmetic Intensity

Plat PEAK
atform (Flops/Bytes)

Gflop/s= min {Platform BW + Al o=

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

PLATFORM PEAK FLOPS

How many floating point operations per second

Platform PEA

Gflop/s=min | p i Grm BW = Al

Theoretical value can be computed by specification
Example with 2 sockets Intel® Xeon® Processor E5-2697 v2
PEAKFLOP= 2 x 27 x 12 x 8 x 2=1036.8Gflop/s

Number of sockets / Number of core;\ 1 port for addition, 1 for multiplication

Core Frequency Number of single precision
element in a SIMD register

More realistic value can be obtained by running Linpack
=~ 930 Gflop/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

PLATFORM PEAK BANDWIDTH

How many bytes can be transferred per second

lon/se min Pl AK
OPIS=MURIBatform BW * Al

Theoretical value can be computed by specification
Example with 2 sockets Intel® Xeon® Processor E5-2697 v2
PEAKBW=2 x 1866 x 8 x 4 =119GB/s

7 X
Number of sockets Byte per channel
Memory Frequency Number of mem channels

More realistic value can be obtained by running Stream
=~ 100 GB/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DRAWING THE ROOFLINE
Defining the speed of light

Platform PEAK

Gflop/s=min {Platform BW x Al

a

1036

2 sockets Intel® Xeon® Processor E5-2697 v2
Peak Flop = 1036 Gflop/s
Peak BW = 119 GB/s

Gflops/s

Al [Flop/B]

Optimization Notice

tel Corporation. All rights reserved.
ands may be claimed as the property of others.

DRAWING THE ROOFLINE
Defining the speed of light

Platform PEAK

Gflop/s=min {Platform BW « AI

a

2 sockets Intel® Xeon® Processor E5-2697 v2
Peak Flop = 1036 Gflop/s
Peak BW = 119 GB/s

1036 b- === - === - - _
Gflops/s

Al [Flop/B]

Optimization Notice

20, Intel Corporation. All rights reserved.
nd brands may be claimed as the property of others.

DRAWING THE ROOFLINE
Defining the speed of light

Platform PEAK 2 sockets Intel® Xeon® Processor E5-2697 v2
Gflop/s= min Peak Flop = 1036 Gflop/s
_ (Platform BW x Al Peak BW = 119 GB/s

1036

Gflops/s

v

8.7
Al [Flop/B]

Optimization Notice
opyri

, Intel Corporation. All rights reserved

1 brands may be claimed as the property of others.

WHAT IS THE PERFORMANCE BOUNDARY?

Manual way to do it

Manual counting on matrix/matrix multiplication

for(i=0; i<N; i++)
for(j=0; J<N; j++)
for(k=0; k<N; k++)
c[ilij] = clili] + afi][k] * bK][]

#add=N*N*N #Read =3 * N * N * 4 bytes
#mul=N*N*N #Write = N * N * 4 bytes
4o 2N 1
~ 16N2 8

Optimization Notice

tel Corporation. All rights reserved.
ands may be claimed as the property of others.

COMPUTE THE MAXIMUM PERFORMANCE
BW * Arithmetic Intensity

(Platform PEAK

Gllop/s=min 1 p1otform Bw + a1

If N = 8, sgemm should not be able
to perform better than 119 GFlop/s
on a 2 sockets lvy Bridge

1036
119

Gflops/s

2 sockets Intel® Xeon® Processor E5-2697 v2
Peak Flop = 1036 Gflop/s
Peak BW = 119 GB/s

For sgemm
Al=1/8N
IfN=8, Al=1

1
Al [Flop/B]

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

v

8.7

AND NOW?

How to get better performance?

1036 |F--=—=--=-=-=-=--=—=-——-—- E
119 |===-==-==--—--—- :

Gflops/s

‘ Vectorization + threading

Optimize memory access |

v

1 8.7

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ROOFLINE IN INTEL" ADVISOR

What i1s a Roofline Chart?

A Roofline Chart plots application performance against hardware limitations.

erformance 3 |a| - X B | Use Single-Threaded Roofs @ =
« Where are the bottlenecks? ™" - ?
42167 ° ‘?ector FMA Peak lj:single’-_thcaadéc]:]ﬂ#?’ 1 (j,GFf_O_If'%
. - P Vector Add Peak {single-threadsd) 72.89 GFLOPS
e How much performanceis = _awts of IR
being left on the table? i e @
Y et o @ ® T scoloradd Poak (sngle-threodedy 537 GFLOPS
* Which bottlenecks can be et et © e
addressed, and which should : L
) ,-.\?Ig@;‘T -t y -
be addressed? 08 e w o
, . 0.04 P 07
 \What’s the most Ilkely cause? Arithmetic Intensity (FLOP/Byte)

Roofline first proposed by University of California at Berkeley:
Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009

¢ What are the neXt StepS? Cache-aware variant proposed by University of Lisbon:

Cache-Aware Roofline Model: Upgrading the Loft, 2013

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Roofline Metrics

Roofline is based on FLOPS and Arithmetic Intensity (Al).

SpMV FFTs

 FLOPS: Floating-Point Operations / Second

« Arithmetic Intensity: FLOP / Byte Accessed :

ow Al

Collecting this
information in
Intel® Advisor
requires two
analyses.

Ultimate Performance Limits

A
FLOPS

Optimization Notice

Performance cannot exceed the
machine’s capabilities, so each loop is
ultimately limited by either compute or

memory capacity.
ﬁ N

O

Ultimately Memory- Ultimately Compute- o
Bound Bound

>
Arithmetic Intensity
FLOP/Byte

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Sub-Roofs and Current Limits

A ne ne ne
C C C
FLOPS WA ca \2 Ga W3 Ge
Vector with FMAS
. \ector
Scalar
>

Arithmetic Intensity
FLOP/Byte

The Intel® Advisor Roofline Interface

Performance (GFLOPS) k @ M« x B~ | Use Single-Threaded Roofs| —»
* Roofs are based on benchmarks L2 Barciwid 0 [7e6 oo
. . b L3 Bandwidth O 4642 |cBlse
run before the application. DRAM Bandwidh 0 GBLE
) SP Vector FMA Peak [] O [s692 |aFLo
* Roofs can be h|dden, SPVector AddPeak [] O [29 cro
: : : .| DP Vector FMA Peak 4179 GFlo
highlighted, or adjusted. e —— O s
)) ‘| Scalar Add Peak O [s38 |aro
* Intel® Advisor has size- and
COIOr_COdIng for dOtS- Loop Weight Representation Cancel Default
. [] Size Ct.)lor
« Color code by duration or °
vectorization status ¥ o b] lgew |
S & = Threshold Velue [15 %
. . 1. & & elow
- Categories, cutoffs, and visual 7" o voe “ |
Style Can be mOdIerd. SeIiEIape[?é%%?ime: 18.371s Total Time: 18.371 s - . |8 | |red | ~

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ldentifying Good Optimization Candidates

.. . A
Focus optimization =~ GFLOPs/S MM GV

effort where it makes

the most difference. CPU Cap: FMAs

« Large, red loops
have the most

CPU Cap: Vector Add

impact.
 Loops far from the g CPU Cap: Scalar Add
upper roofs have *D
more room to A
improve. *C

>
Arithmetic Intensity (FLOPs/Byte)

G-
¢ |ntel 43

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ldentifying Potential Bottlenecks

Final roofs do apply; Performance (GFLOPS) Wa®e« s xB-|MHu=

sub-roofs may apply. 8521 - N :

* Roofs above indicate
potential bottlenecks

* Closer roofs are the
most likely suspects

* Roofs below may
contribute but are)
generally not primary %% i) BRI

bottlenecks 0.037 024
Self Elapsed Time: 13.734s Tofal Time: 13.734 s Arithmetic Intensity (FLOP/Byte)

P
|ntel

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ROOFLINE WITH CALL STACKS

Roofline with Call Stacks

Advisor 2018 Update 1 added call stacks to Roofline.

[@"_Ff x |§ - | Cores used for roof modeling @ \ % ~ FLOAT; With Callstacks ~ =
) 7 - Callstack:

« Granularity of data can be adjusted.

10.42 4 o - B O - O RtlUserThreadStart

. & .- O BaseThreadnitThu..

e Revea|S Ineﬁ:ICIenCIeS that Ol’lglnate = 'I,,,ﬁ%ﬁlif“,o,':'??k;,5-,7,7:%5,'—@{’?,,, O _scrt_common_m..
o 3 - /,— () main at slbe cpp:22

- -7 O fsBGKShanChen ..

higher in the call chain.

O [loop in fsBGKSha..
QO fCalcPotential_Sh..
O [loop in fCalcPote..
i O [OpenMP fork]
" O _kmp_fork_call at ..
O fCalcPotential_Sh..
O [loop in fCalcPote...

 More accurate view of functions or
loops that behave differently under
different circumstances

- Differentiates between instances o». <" L
with different call chains. e

Physical Cores: 4 @ App Threads: 1 @ self Elapsed Time: 2.050 s Total Elapsed Time: 9.710 s

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Reading the Roofline with Call Stacks

Visualizing the Call Chain

Arrows indicate relationships between dots.

Y) Xis called directly by Y.

—
®—l> Z) Xdirectly calls Z

The call stack displays the call chain for the
selected loop. Clicking an entry causes it to
flash on the Roofline for easy identification.

- -) _kmp_fork_call at ..

L = . £ I‘w:}
= ® O fCalcPotential_Sh..
® (O [loop in fCalcPote...
® @ [loop in fCalcPote...

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Selecting the
green dot shows
that it is called by

the yellow dot,
and doesn’t call
anything itself.

The selected
yellow dot was
called by the gray
dot, and it calls
the red and green
dots.

Self Data vs Total Data

The original Roofline used only self data: only work done directly is recorded.

The Roofline with call stacks uses both self data and total data, which includes
work done in functions or loops called as well as work done directly.

for (int 1 = 0; i < 10; i++)

{
X=13i*24 + 179.4 - i;
Y= (i + 18) / 72.8;
foobar () ;

Total for (int j = 0; j < 3; j++)
{
Z=3i*3j+7;

}

}

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Reading the Roofline with Call Stacks

Expanding and Collapsing Outer Loops

Collapsing and expanding dots switches between self- and total-data

Dots with no self data are
grayed out when expanded
and in color when collapsed.

Dots that have self data have
the appearance and location

based on it when expanded,

with a halo of the size related
to their total data.

Optimization Notice

mode.

e

v

[

Collapse

Collapse

When collapsed, their appearance and
location changes to reflect the total data.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

GUI AND COMMAND LINE

Get Roofline data using GUI

miniGhost - Project Properties

[4] C:\Work\projects\miniGhost - Intel Advisor :
Analysis Target ‘ Binary/Symbael Search | Source Saarchl
Ble View Hga BY | Suney Ay Types Launch Applcation |
i | B I [C] ‘ P Start Survey Analysis = | = | ©)) Survey Hotspots Analysis - - -)
o Specify and configure the application executable (target) to analyze. Press F1 for more details.

Welcome o . _
& Suitability Analysis TISEF-TIETITTEn ST GPT e R TabTEsT n

-~ -7 Refinement Analysis Types Modify...
@ Elapsed time: 4,835 fl Memory Access Patterns Analysic
i D dencies Analysi
FILTER:| AllModules ~|[AllSources ~] + Depencencies Ansyse Child application:
Summary © Survey & Roofline Analyze loops that reside in non-executed code paths
Performance (GFLOPS)
Analyze Python loops and functions
B . Include only the following medule(s)
| ilsillz ® Exclude the following module(s)
Modify...

Collect information about Loop Trip Counts
Collectinformation about FLOP, L1 memory traffic, and AVX-512 mask usage

OIECT stac)

Comma d Iine 3] Use MPI launcher

created by GUI g
rations Per
LOP / Self El g L &
Q Collect Giga Fleating-point Operations Per
(G cotect Iy J Total GFLOPS 108375 111 GFLOPS = Total GFLOP / Total ok || cancel
Self &l - Self Arthmetic Intensity - B
| SelfAl 0,12500 Floating-Point Operations To Self L T
Total Al - Total Arithmetic Intensity - Ratio Of Total
Total Al 0,12500 Floating-Point Operations To Total L1 Transferred Bytes
Giga Fleating-Point Operations, Mot Including GFLOP For
EI b Collect n elf GFLOP 0,41943 Functions Called In The Loop Or Function
Total oP 0.41943 Giga Fleating-Point Operations Of Function/Loop And fs
! Callees
[Self FLOP Per lteration 32] Floating-point Operations Per Loop teration
G Re-finalize Survey Elapsed Time Is The Exclusive (Self-Time-Based) Wall v

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Get roofline data using command line. Example:

> source advixe-vars.sh

1st method:

> advixe-cl -collect roofline -project-dir ./your project -- <your-executable-
with-parameters>

2"d method (more flexible):

> advixe-cl -collect survey -project-dir ./your project -- <your-executable-
with-parameters>

> advixe-cl -collect tripcounts -flop -project-dir ./your project -- <your-
executable-with-parameters>

> advixe-gui ./your project

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Running Intel Advisor XE on a cluster

Example: Collect from middle rank of 3x3x3 cube of processes:
mpirun -n 27 advixe-cl -collect survey-project-dir ./my_proj ./your_app

mpirun -n 13 ./your_app \
: -n 1 advixe-cl -collect survey -project-dir ./my_proj ./your_app \
:-n 13 ./your_app

Intel MPI-specific (adding corner rank and middle surface rank):

mpirun —n 27 \
—gtool “advixe-cl —collect survey --project-dir ./my_proj :1,5,14” ./your_app

or: |_MPI_GTOOL="advixe-cl —collect survey --project-dir ./my_proj :1,5,14”

Optimization Notice
i n

AH rights ved.
nIlrad yl | ned a Ippyfl

FLOPS AND MASK UTILIZATION PROFILER

Precise Repeatable FLOPS Metrics

Intel® Advisor — Vectorization Optimization

= FLOPS by loop and function » Instrumentation (count FLOPS) plus

= All recent Intel processors

(not co-processors)

sampling (time with low overhead)

= Adjusted for masking
with AVX-512 processors

[=| Function Call Sites and Loops

B1'¥ [loop in matvec at Multiply.c:69]
40 [loop in matvec at Multiply.c:60]
3|00 [loop in matvec at Multiply.c:69]
4|0 [loop in matvec at Multiply.c:60]
[loop in matvec at Multiply.c:69]
[loop in matvec at Multiply.c:60]

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL ADVISOR 2017
FLOPS
GFLOPS | Al L1 GB/s | GFLOP FLOP Per lteration | L1 GE | L1 Bytes Per lteration
0.82610 0.1633 | 5.0586 3.0720 E 18.8160 |1‘JE
0.9120 0.1633 5.58533 3.0720 32 18.8160 | 196
12420 0.2500 | 4.9920 1.3440 4 53760 |16
1.5920 0.2500 | 6,3699 1.3440 4 53760 |16
3.055@ |0.2500 12.2205 | 0.0960 16 0.3840 |64
6.282 B | 0.2500 251279 | 0.0960 16 03840 |64

Getting FLOP/S in Advisor

FLOP/S Seconds #FLOP
= #FLOP/Seconds - and Mask Utilization
- and #Bytes

Step 1: Survey

- Not intrusive, sampling based, ~5-10%
overhead

- Time/Performance-representative

Step 2: Trip counts+FLOPS
Precise, instrumentation based

- Physically count Num-Instructions

- Possible to do all types of dynamic
analysis including mask register tracking
etc

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

Why Mask Utilization is Important?

100%

for(i = 0; i <= MAX; i++)
c[i] = a[i] + b[il;

#FLOP (MAX = 8): 8

“ ali+7] ali+6] al[i+5] | a[i+4] | a[i+3] Na[*2] (a[\—‘r;_ 2)
+ +

bli+7] bli+6] b[i+5] ' b[i+4] | b[i+3] FB[i+2] f;[;.‘,; N o §

cli+7] cli+6] c[i+5] | cli+4] | cli+3] Nelit2] (c:]r—lj \ <l

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Why Mask Utilization Important?

3 elements suppressed

for(i = 0; i <= MAX; i++)

if (cond(i)) Mask Utilization = 5/8

c[i] = a[i] + b[i];

0 1 01 101 1

— #FLOP (MAX = 8): 5

- 1 c[i+4] @ c[i+3] /// el J

Op t|m|zat|0n Notice
o]

, Intel

C rved.
*O bran clan ed as the property of others.

VECTORIZATION EFFICIENCY

Spend your time in the most efficient place!
A typical vectorized loop consists of...

Main vector body
» Fastest among the three! m
Optional peel part

= Used for the unaligned references in your loop.
Uses Scalar or slower vector

Remainder part

= Due to the number of iterations (trip count) not being divisible by vector length. Uses Scalar or
slower vector.

Larger vector register means more iterations in peel/remainder
= Make sure you align your data! (and you tell the compiler it is aligned!)

» Make the number of iterations divisible by the vector length!

Optimization Notice

opyright © 2020, Intel Corporation. All rights reserved.
es and brands may be claimed as the property of others.

What are peels and remainders?

// xAVX
// 256 bits wide regs
 Vectorized // holds 4 x 64bit vals

Body
void Func (double *pA)

{

32 byte boundary

for (int i=0; i<19;i++)
_______________ | pA[1i] = ..;
Remainder }

Optimization Notice

Copyri ghtO 2020 Int |c p n. Al rights ved. Intel Confidential
*Othel and brands ylldlppyfh

Don’t Just Vectorize, Vectorize Efficiently
See detailed times for each part of your loops. Is it worth more effort?

% Where should | add vectorization and/or threading parallelism? D

Summary u NI 7 Refinement Reports & Annotation Report | Suitability Report

Elapsed time: 8,525 || Vectorized Mot Vectorized FILTER: | All Modules v | | All Sources h
Function Call Sites and Loops & | @ Vectorlssues Self Timew Total Time Loop Type Why No
P PYP Vectorization?
=Y [loop at fractal.cpp:179 in <lambdal=:op ... ‘¢ 4 High vector ... 0,013s] 12,020s B Collapse Collapse
(L] [loop at fractal.cpp:179 in <lambdal>zo.. ® Serialized use.. 00131 11,281s 1 | Vectorized (Body)
1+ [loop at fractal.cpp:179 in <lambdal=zo.. ‘¢ 2 Data type co... 0,000s | 0,163s| Peeled
1+ [loop at fractal.cpp:179 in <lambdal=zo.. ‘¢ 2 Data type co.... 0,000s | 0,576s1 Remainder
i+ [loop at fractal.cpp:177 in <lambdal=zoper... [] % 2 Datatypeco.. 0,010s1 12,030 B Scalar

£

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Get Specific Advice For Improving Vectorization

Intel® Advisor — Vectorization Advisor

| Where should | add vectorization and/or threading parallelism?
Summary % Survey Report i
Elapsed time: 8,815

Refinement Reports

Intel Advisor XE 2016
& Annotation Report | Suitability Report
Vectorized Mot Vectorized

FILTER: |All Modules

¥ | | All Sources v Q
Vectorized Loops 2
Function Call Sites and Loops & | Q@ Vectorlssues Self Timew Total Time Loop Type | Why Mo Vecterization? .
‘u‘ecto...l Estim... |‘u‘ector Len
e Click to see recom mendation 1146088 Scaler
i+ (D [loop at arena.cpp:88 in thb:tbb:]
=W [loop at fractal.cpp:179 in <lambda1>:op....

11,460 BB Scalar
® 5 Ineffective ...
1+ [loop at fractal.cpp:179 in <lambdal>zo

[] @2Datatypeco..

0,000 | 202250

Remainder

‘¢ Recommendations | ©

Issue: Ineffective peeled/remainder loop(s) present

]
All or some source loop iterations are not executing in the loop body. Improve performance by moving source loop iterations from
peeled/remainder loops to the loop body.

(>) Disable unrolling

The trip count after loop unrolling is too small compared to| AdV|Sor ShOWS h|ntS to move
factor using a directive.

ICL/ICC/ICPC Directive | IFORT Directive

#pragma nounroll IDIRS NOUNROLL
#pragma unroll IDIRS UNROLL

nroll

iterations to vector body.

Read More:

e User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific Pragma
Reference > unroll/nounroll.

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others

Critical Data Made Easy r———

Loop Trip Counts spent in a loop is not
enough!

« [Where should | add vectorization and/or threading parallelis—~ Intel Advisor XE 2016

Summary z Survey Report [RaS GG s & Annotation Report s auitabil

| Program time: 12825 | | Vectorized | | Mot Vectorized | | All Modules ¥ | All Sources v =
— Trip Counts Compiler Vectorization
Function Call Sites and Loops Self Timew | Total Time [] @) : T
Median | Min | Mazx | Call Count Loop Type Why No Vectorizatiol

= [loop at Multiply.c:53 in matvec] 11.203: 0 11.29%: 0@ @1 Collapse Collapse
i+ [[loop at Multiply.c:33 in matvec] 11.851:@8 11.851-mm [] @1 1M 10 101 12000000 Vectorized (Body) vector dependence p
1+ [loop at Multiply.c:33 in matvec] 0.047s1 0.047s1 | 3 3 3 1000000 Vectorized (Body)

i [loop at Multiply.c:33 in matvec] 0.413s1 0.413s1] 10 101 101 2000000 Scalar

BV [loop at Multiply.c:45 in matvec] 12.373s) "1

i:[loop at Driver.c:146 in main] 0.016s1 12483 @@ [] &1 1000000 Scalar gctor dependence p

Loop is iterating Since the loop is
1.1 Find Trip Counts 101 times but called so many

Find how m Eiﬂnzare executed. aC'[ua| trlp Ca”ed > ml”lon times it would be
[counts times a big win if we

Command Line can get |t tO

vectorize.

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Factors that slow-down your Vectorized code

1.A. Indirect memory access 3. Small trip counts not multiple of VL
for (i=0; i<N; i++) void doit(int *a, int *b, int unknown small value)
A[B[i]] = C[i]*D[i] {
for(int i = 0; i < unknown small value; i++)
i# j = B[i] # B[]j] a[i] = z*b[i];
}

1.B Memory sub-system Latency / Throughput

void scale(int *a, int *b)

{

for (int i = 0; i < VERY BIG; i++){ 4. Branchy codes, outer vs. inner loops
cl[i] = z * a[i] []j]; . . .
b[i] =z * a[i],' for(l = 0; i <= MAX; l++) {
} if (D[i] < N)
, do_this(D);
else if (D[i] > M)
do_that() ;
2. Serialized or “sub-optimal” function calls /1.

for (1 = 1; i < nx; i++) {
sumx = sumx +
serialized func call(x, y, xp);

} 5. MANY others: spill/fill, fp accuracy trade-offs,
FMA, DIVISQRT, Unrolling, even AVX throttling..

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved. (|nte‘ .

*Other names and brands may be claimed as the property of others.

Factors th

| Optimization Notice |

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2.19x |

~55%
. I
Vectorization Gain

Veclorization Efficiency

at slow-down your Vectorized co

| 2.2 Check Memory Access Patterns

[1

P

Command Line

(=" loop in at IbpSUB.cpp:1316]

Q 2 Ineffective peeled/remainder loop(s) p... AVX
®

effective
All or some source loop

¢ Recommendations.

a
mainder loop(s)

ent
iter:

s are not executing in the loop body. Improve performance
() Recommendation: Add data padding

Tha trin caunt ic nnt a multinla af uartar lannth T fiv: N ana f tha fallnwinn-

= oy

\ Recommendations)
1
\

\ Lrseup pauy | gy pauiny |

Optional: Specity the trip count, it it is not constant, using a directive: #pragma loop_
\ Read More:
\
. fi dding, O f dding; loop_count

\ Utilizing Full Vectors and Use of Option -gopt-assume-safe-padding, Getting §

\

\ &) Recommendation: Collect trip counts data

\ - . .

\) Recommendation: Disable unrolling

[) Recommendation: Specify the expected loop trip count

\‘) Recommendation: Use a smaller vector length

\ Instruction Set Analysis

Vector Issues
Traits Data Types

\ BB ffic... FMA; Gathers; Type Conversions Float64; Int32

\ ,

\ Loop Analytics ") = /7

\ 7’

e |
Traits

4
Gathers
-

« Irregular Memory Access Patterns May Decrease Performance|

e

Vector Efficiency:. All The Data In One Place

My “performance thermometer” et s
Loops = - - : : Self Time
Vectnu!Ef'fmench !Estlmated Gain “u’ect...‘Co Traits ‘ ector Widths
loop at IbpSUB.cop:1280 in fPropagations .. AV [13% | |053 l 4 0,53 TBTends; Bracts, Inserts, Ghumles 128/256 2312
[loop at IbpGET.cppd52 in fGetFracsite] A | 30% |238 8 234 Blends; Inserts; Masked Stores 11281256 0,030s]
[loop at bpGET.cpp:d2 in fGetOneMassSite] AVX | 36% |2,86 8 279 256 0,100z
[loop at IbpGET.cpp:78 in fGetTotMassSite] AVK | 35% |2,86 8 219 256 0,010s]
[loop at IbpGET.cpp334 in fGetOnelirecSp.. AVX [85 3,05 g 297 Type Conversions 128/256 00115]
iU [loop at IbpBGK.cpp:340 in fCollisionBGK] AVX | 100% | |2,t]5 2 205 128 0,080z
4

* Auto-vectorization: affected <3% of code
* With moderate speed-ups
* First attempt to simply put #pragma simd:
* Introduced slow-down
Achieved Original (scalar) Upper bound: * Look at Vector Issues and Traits to find out why
Efficiency code efficiency. ~ 100% « All kinds of “memory manipulations”

13%

Corresponds efficie_ncy « Usually an indication of “bad” access pattern
to 1x speed-up. 4x gain
(VL=4)

Survey: Find out if your code is “under vectorized” and why

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor Survey: Focus + Characterize.
Focus and order vectorized loops

[

Instruction Set Analysis

Functicn Call Sites and ‘ s m Vectorized Loops] = - -
Loops vect.[[Efficiency ~ | | Gain... VL .| Traits |pataT. Vectornzed lgl Mot Vectorized
[loop in s241_atlo.. O AVX ~07% TT76x 8 Float32
[loopin s152s_atlo.. O AVXZ | [=98% T7x 8 FMA Float32
[loopins452_atlo.. [] | % 1Datatype conversions present AVX2 EE T77x 8 FMA; Type Con... Float32
[loopins413_atlo.. [] @ 1lIneffective peeled/remainder ... AVX2 [20838 | 763« 4:8 FMA Float32 P
[loopins273_atlo.. [] | @ 1Possibleinefficient memorya.. AVX2 E?ﬁ% 76 8 FMA; Masked St. Float32 o Eff I C I e n Cy - my pe rfo rm an Ce
[loopins279_atlo.. [] @ 2Possibleinefficient memorya. AVX2 [85% | 7,56x 2 Blends FMA " Float32
[loopins253_atle.. [] @ 2Possibleinefficient memorya. AVX2 [E81% |7.30x 2 Blends FMA " Float32 thermometer
[loop in s251_atlo... [AVX2 723 8 FMA Float32
[loopins271_atlo.. [% 2Possibleinefficient memory a.. AVX2 716x 4:8 FMA; Masked St.. Float32
[loop in vif_atloop.. [] | @ 1Possibleinefficient memory a.. AVX 6,90 & Blends 7 Float32
[loop ins274_atlo... [] | @ 1Possibleinefficient memory a.. AVX2 6,20x 8 Blends: FMA; M. Float32 d H T
[\ooz inSET2Datm.. [] " AVX 581 8 Float32 ® ReC O m m en at I 0 n S - get tl p On
[loop in stds:_Fill<fl... [AVX 581 & Float32 .
[loopin SET2D atm... [] | @& 1Datatype conversions present AVX2 531« 8 Divisions; Type ... Float32 h OW to I m p rove pe rfo rm an Ce

Recommendation:

» (also apply to scalar loops)

Issue: Ineffective peeled/remainder loop(s) present
All or some source loop iterations are not executing in the loop body. Improve performance by moving sour

) Recommendation: Add data padding
The trip count is not a multiple of vector length. To fix: Do one of the following:

s Increase the size of objects and add iterations so the trip count is a multiple of vector length.
e Increase the size of static and automatic objects, and use a compiler option to add data padding

Windows* OS5 Linux* OS5
\
| /Qopt-assume-safe—padding | ~qopt-assume-safe-padding |

Note: These compiler options apply only to Intel® Many Integrated Core Architecture (Intel® MIC Archi

When you use one of these compiler options, the compiler does not add any padding for static and aut
application. To satisfy this assumption, you must increase the size of static and automatic objects in y

Optional: Specify the trip count, if it is not constant, using a direc(ive:[#pr"agma loop_count]
Read More:

[® gopt-assume-safe-padding, Qopt-assume-safe-padding: loop_count]

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Loop Analytics

Get detailed information about your loops

Loop Analytics g a

56265 Traits

Inserts
Vectorized (Body; Remainder) Total time

AVX 5.626s : :
Instruction Set Self time |n5trU Ctlon M IX
Memary:7 Compute: & Other- 4

¥ Memory: 43.75% ¥ Compute: 31.25% [Other: 25%

[Vector: 18.{ Scatar: 25% | | [Vecto...[Scalar: 1.2

> Memory 44% (7) D

» Compute 31% (5) D

o Other 25% (4) D
Insruction M Summary

2.19x | %

Vectorization Gain Vectorization Efficiency

@

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEPENDENCY ANALYSIS

Factors that prevent Vectorizing your code

1. Loop-carried dependencies 3. Loop structure, boundary condition
DOI=1, N struct _x { int d; int bound; };
END’;*C‘,I FH =AM+ B \{roid doit(int *a, struct _x *x)

M >= SIMDlength? fo::i?t;ioj 0; i < x->bound; i++)
1.A Pointer aliasing (compiler-specific) !
void seale(int *a, int b) 4 Quter vs. inner loops

for (int i = 0; i < 1000; i++)

b[i] =z * a[i]; for(i = 0; i <= MAX; i++) {

} for(j = 0; j <= MAX; j++) {
D[JjI[i] += 1;
}
}
2. Function calls (incl. indirect)
for (i = 1; i < nx; it4) { 5. Cost-benefit (compiler specific..)

x =x0 + i * h;
sumx = sumx + func(x, y, xp);

} And others......

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Is It Safe to Vectorize?

Loop-carried dependencies analysis verifies correctness

« % Where should | add vectorization and/or threading parallelism? B Intel Advisor XE 201¢
Summary m SIS 7 Refinement Reports & Annotation Report i Suitability Report
| Program time: 12.82s | | Wectorized | | Mot Vectorized | FILTER: | All Modules v | All Sources v =
Compiler Vectorization
Function Call Sites and Loops Self Timew | Total Time [@ | Trip Counts —
Loop Type Why No Vectornization?

i+ [loop at Multiply.c:53 in matvec] 0.047s | 0.047s | O 3 Vectorized (Body)
i:[loop at Multiply.c:33 in matvec] 0.413s| 0.413s|] i Scalar
= [loep at Multiply.c:45 in matvec] 0.100s| 12.373s W1 Cellapse Collapse

i+ [loop at Multiply.c:43 in matvec] 0,078z 11.830:mm [12 WVectorized (Body)

i*[loop at Multiply.c:45 in matvec] 0.031s| 0.444s|] 2 Remainder

[loop at Driver.c:146 in main] 0.016s| 12.483s1 vector dependence prevents vectoriza...

Select loop for
2.1 Check Correctness CorreCI;) VeCtor Dependence

Identify and -carried dependencies reve ntS
Identify .
for marked loops. Fix the reported problems. AnaIyS|S and p

press play!

Vectorization!

Command Line

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data Dependencies — Tough Problem #1

Is it safe to force the compiler to vectorize?

for (i=0;i<N;i++) // Loop carried dependencies!
= *C[i]; // Need to check if it is safe to force
// the compiler to vectorize!

Issue: Assumed dependency present
The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependency (Read after write - RAW) in the

loop. Improve performance by investigating the assumption and handling accordingly.

(>) Enable vectorization
Potential performance gain: Information not available until Beta Update release
Confidence this recommendation applies to your code: Information not available until Beta Update release

The Correctness analysis shows there is no real dependency in the loop for the given workload. Tell the compiler it is safe
to vectorize using the restrict keyword or a directive.

ICL/ICC/ICPC Directive IFORT Directive Outcome
#pragma simd or #pragma omp simd | !DIRS SIMD or !$OMP SIMD | Ignores all dependencies in the loop
#pragma ivdep DIRS IVDEP Ignores only vector dependencies (which is safest)

Read More:
s User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific

Pragma Reference >
o ivdep
o omp simd

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Correctness — Is It Safe to Vectorize?

Loop-carried dependencies analysis

% Check for loop-carried dependencies in your application o

@ Refinernent Reports [

Info Loop-Canied Depe Stride Access Pattern
main.cpp:13 @RAWT AWART Awaw | DISTSRAEEATEIM Mixed strides

Detected
dependencies

nnnnnn

D Description Source Function Module State
EI(17 Read E main.cpp:22 main test_lexe e New
20 K += a9l
21 k %= a[8]:
2z k-=al7]:
23 K += al6];
24 k *= a5l
EX18 Read main.cppi23main

21 k *= a[8];
2z k -= al7];
23 k += al8];

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Received recommendations to force vectorization of a
loop:

1. Mark-up loop and check for REAL dependencies
2. Explore dependencies with code snippets

In this example 3 dependencies were detected:
* RAW — Read After Write
= WAR — Write After Read

= WAW — Write After Write

This is NOT a good candidate to force
vectorization!

MEMORY ACCESS PATTERN ANALYSIS

Memory access patterns

Unit strided (contiguous):

Arbitrary access:

P 1t
[o] | gz

Constant strided:

Memory access patterns

Unit strided (contiguous):

Arbitrary access:

Constant strided:

Improve Vectorization

Memory Access pattern analysis

: are should | add vectorization and/o eading paralle *
gSur\reyReport
|Elapsedtime:8,5?_s|| Vectorized || Mot Vectorized | Bt laduls 5 W
Select loops of Wby o
Loop Type Vectorization?

Function Call Sites and Loops [] Intel‘eSt

Collapse

12,0205 3 Collapse

=14 [loop at fractal.cpp:179 in <lambdal>zop... ____ 4 0.013s|
L] [loop at fractal.cpp:179 in <lambdal>uo.. I serialized use... [ES 11,281s 1 | Vectorized (Body)
1> [loop at fractal.cpp:179 in <lambdal>zuo ... 'y 2 Data type co .. 0,000s 1 0,163s1 Peeled
i+ [loop at fractal.cpp:179 in <lambdal=zo... ¢ 2 Data type co.. 0,000s | 0,576s) Remainder
0,010s1 12,030 B Scalar

1> [loop at fractal.cpp:177 in <lambdal>uoper.. [& 2Datatypeco..

<

2.2 Check Memory Access Patterns

r and
for mar

Run Memory Access Patterns analysis,

just to check how memory is used in the
loop and the called function

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Irregular access patterns decreases performance!

Gather profiling

Run Memory Access Pattern
Analysis

Optimization Notice

BO 0%:percentage of memory instructions with unit stride or stride 0 accesses

Unit stride (stride 1) = Instruction accesses memory that consistently changes
by one element from iteration to iteration

(@ Uniform stride (stride 0) = Instruction accesses the same memory from iteration to iteration

50%: percentage of memory instructions with fixed or constant non-unit

stride accesses

Constant stride (stride N) = Instruction accesses memory that consistently changes
by N elements from iteration to iteration

Example: for the double floating point type, stride 4 means the memory

address accessed by this instruction increased by 32 bytes, (4*sizeof(double))

with each iteration

@E 50%: percentage of memory instructions with irregular (variable or random)

stride accesses
Irregular stride = Instruction accesses memory addresses that change by an
unpredictable number of elements from iteration to iteration
Typically observed for indirect indexed array accesses, for example, a[index{i]]
& - gather (irregular) accesses, detected for v(p)gather* instructions on AVX2
Instruction Set Architecture

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Enhanced Memory Access Analysis

Are you bandwidth or compute limited?

M e aS u re FO Otp rl nt Site Location Loop-Carried Dependencies Strides Distribution Access Pattern Max. Site Footprint

[loop in s4117_ at loopstl.opp:76.. Ne information available 50% / 30% /0% Mixed strides 1528

u Compare tO CaChe S|Ze [loop in s442_ at loopstl.cpp:6813] No information available 36% / 0%/ 44% Mixed strides |\ 2568
. ot @ [loop in s272_ at loopstl.cpp:3447] Ne information available [B0%/0%/ 0% || Mixed strides 3208
Does it fit in L2 cache?

Memory Access Patterns Report | Dependencies Report| | '¢' Recommendations V
Varlable Refe re nces D | | Stride |Type | Source | Mested Function/ | Variable references |Access Footprint | Mo

=P2 2] Gather stride loopstl.cpp:3450 e d _LSEOB led |
I 3448 if i = *
* Map data to variable names| |iii <
H H 3450 af[i] +=c [i_] *d_ [i]:
for easier analySIS 3451 bli_] +=c_[i_]*c [i ls
3452 1
Gather/Scatter | — f Catherlsaterdets
Address | Line Assembly Physical Stride | Op 2 Pattern: "Unit
ed3265a vgatherdpaz (%r8,%zmms, 4), k1, % Instruction accesses values in contiguous memory
u DeteCt unneeded 032661 3403 leag (sr13,irai,1), srs througheut the l00p: tion
432666 3450 wgatherdpsz (%r9,%zmms,4), %k3, %zmml 22} hit* - stride between iterations = vector length
(ed3266d 3450 wgatherdpsz (%r@,%$zmms,4), %k2, $zmmd 22} bit* : : .
gather/scatte rS tha't reduce 432674 3450 wvimadd213ps $zmm2, $zmml, %zmmd c:;:i?::i::l(d;yi:i;:ead

(432672 3403 leag (%rcx,%rsi,l), %rd

performance 0x43267e 3450 vmovupsz S$zmmd, (%rsi,s$rdx,l){ské} @1 bit* W Mask is constant

Mask: [1111111111111111]
Active elements in the mask: 100,0%

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

References

Roofline model proposed by Williams, Waterman, Patterson:
http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf

“Cache-aware Roofline model: Upgrading the loft” (llic, Pratas, Sousa, INESC-
ID/IST, Thec Uni of Lisbon)
http://www.inesc-id.pt/ficheiros/publicacoes/9068. pdf

Optimization Notice
opyri

ntel Corporation. All rights reserved.
rands may be claimed as the property of others.

http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Additional Material

Intel® Advisor — Threading Design & Prototyping:

= Product page — overview, features, FAQs, support...

= Training materials — movies, tech briefs, documentation...

= Evaluation guides — step by step walk through

= Reviews
Additional Analysis Tools:

= Intel® VTune Amplifier — performance profiler

= [ntel® Inspector - memory and thread checker / debugger

Additional Development Products:

= |ntel® Software Development Products

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe-support/training
http://software.intel.com/en-us/evaluation-guides/
https://software.intel.com/en-us/intel-advisor-xe/reviews
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-sdp-home/
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-sdp-home/

BACKUP

GETTING STARTED

Before you analyze

Create Project

. . wvecsampple - Project Properties “
* File->New->Project -
> > Analysis Target | Binary/Symbol Search | Source Search
Targettype: | Survey/Suitability Launch Application v
Survey/Suitability Launch Application
p Count Analysis i‘igure the application executable (target) to analyze. Press F1 for more details.
‘ @ No application executable (target) file specified.
Application parameters: Modify...
a2 - directory as working directory
Create a Project :
Browse...
. onment variables:
Project name: | vecsampplg | Modify...
) ; filing mode: | Auto v
Location: Chadvisor_samples\vec_samples Browse...
Create Project Cancel)
< >
oK Cancel

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Analyze what loops you are spending your time in and how they have
been vectorized!

1. Survey Target

Click Collect

nand Line

1.1 Find Trip Counts

nany iterations are executed.

Survey Report

g
»ading parallelism? B Intel Advisor XE 2016

|& Command line | [Sources v o,
ectorized Loops nstruction Set Analys
created by GU| [t rmcion e sl

Vecto...| Estim... |‘u‘ect0r Length Compiler Estimated Gain | Traits Data Types
[] ¢1Assumed. 14.030s@ 14.039

Vector lssues Self Timew | Total

. R Float64
] 0.58551 15.015s @ Scalar & outer loop was nota... Floatd
[0.000s1 15.035: @ Scalar & loop with function c... Floattd

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Next analyze how many times your loops are iterating and how many
times they are called.

1. Survey Target CIle
CO”eCt Trip Counts

Median | Min | Mazx | Call Count lteration Duration
50 50 50 101000000 < 0.0001s
1.1 Find Trip Counts 101 101 o 1000000 < 0.0001s
many iteration:ic executed. 1000000 | 1000DOD | 1000000 |1 < D.0DDTs
Mark Loops for Deeper Analysis
Select s in the 5
Trip Counts
& | Vectorlssues Self Timew Total Time - - . . Loop Type
Median | Min | Max | Call Count | Iteration Duration
i+ (0 [loop at Multiply.c:55 in matvec] [] ¥¢1Assumedde.. 14.030s @8 14.030s @@ 50 50 50 101000000 < 0.0001s Scalar
1+ (0 [loop at Multiply.c:44 in matvec] [0.985s1) 15.015s S | 101 101 101 1000000 < 0.0001s Scalar
0 [loop at Driver.c:145 in main] O 0.000s 1 15,0355 1000000 1000000 | 1000000 1 < 0.0001s Scalar

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Specify loops for deeper analysis

A Where should | add vectorization and/or threading parallelism? D

m Survey Report

| Suitability Report

Summary Refinement Reports & Annotation Report

| Elapsed time: 15.47s || [5G [[%] FLTER: [AN Modules v| | Al Sources v
Loops ‘ § | Vectorlssues | Self Timew |Total Time |Loop Type | Why Mo Vectorization?
i+ [loop at Multiply.c:55 in matvec] g1 Assurned ... 14.030s@ 14.030s @B Scalar B vector dependence p ...

0.8985s10 15015 @ Scalar

15.035s 1| Scalar

i+ [loop at Multiply.c:44 in matvec]
@ [loop at Driver.c:145 in main]

B outer loop was nota..

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Deeper analysis

Check dependencies

1. Survey Target
vhere to add efficient vectorization

1.1 Find Trip Counts

Find how many iterations are executed.

mmand Line

Mark Loops for Deeper Analysis
ect 5 f

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

We marked 3 loops for a
dependency analysis. Two of the
loops had no dependencies. One

of the loops has Read-After-
Write dependency and can’t be

Click Collect vectorized.

™| Check memory access patte” . your application Io

Summary - 5 port " efinement Reports JEEEULTEITl R S

Site Location Loop-Carried Dependencies | Strides Distribution | Access Pattern Site Name

leop at Driver.c:145 in main @ Mo dependencies found Mo information available Mo information available loop_site 6
loop at Multiply.c:44 in matvec @ Mo dependencies found Mo information available Mo information available loop_site_10
loop at Multiply.c:55 in matvec | & RAW:1 Mo information available Mo information available loop_site_8

Deeper analysis

Memory Access Pattern analysis

1. Survey Target

dd efficient vecto

1.1 Find Trip Counts
Find h

nany iterations are executed.

(]

nand Line

Mark Loops for Deeper Analysis
Select n the 5 ult f

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

M’ Check memory access patterns in your appli

Summary - Surve

Report @Reﬁnementﬂeports i

Stride distribution

n O

An ation Report iSuitabiIit_-,-‘ Re|

Site Location | Loop-Carried Dependencies | Strid®s Distribution |Access Pattern Site Name
loop at Driver.c:145 in main @ Mo dependencies found 1005 /0% /0% = All unitstrides loop_site_6
loop at Multiply.c:44 in matvec | @ Mo dependencies found 85% / 15% /0% Mixed strides loop_site_10
loop at Multiply.c:53 in matvec & RAW:1 4%/ 26% /0% Mixed strides loop_site_8
Memory Access Patterns Report
1D Stride Type Source Mested Function Medules Alignment

Parallel site information | Driver.c:143

matri_vector_multiplication_c.exe

47

Pa = o Unit stride Driver.c:157 matrix_vector_multiplication_c.exe
Epw0 @ 0 Unit stride Multiply.c:3% matvec matrix_vector_multiplication_c.exe
Ep12 @ 0 Unit stride Multiply.c:44 matvec matrix_vector_multiplication_c.exe
=13 5 R Unit stride Multiply.c:43 matvec matrix_vector_multiplication_c.exe

43 int i, j:

44

45 for (1 = 0; 1 < sizel; i++) {

18 B[i] = 0:

Click Collect

Batch Mode Workflow Saves Time

Intel® Advisor - Vectorization Advisor

Turn On Run several analyses in batch
Batch Mode as a single run

Contains pre-selected criteria
for advanced analyses

(]
o
||
||

Click
Collect all

Command Line: Intel® Advisor XE

Collecting survey and tripcounts
advixe-cl —collect survey —project-dir ./advi -- mult.exe
advixe-cl —collect tripcounts —project-dir ./advi -- mult.exe
Creating snapshot in command line, e.qg:

advixe-cl --snapshot --project-dir ./advi \
--pack --cache-sources --cache-binaries -- /tmp/new_snapshot

Viewing the results

advixe-gui ./advi

advixe-cl —report survey —project-dir ./advi

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor works with GCC and Microsoft Compilers

Adds bonus capabilities with the Intel Compiler

Advisor using Intel Compiler Adds:
GCC, Microsoft or Intel Compiler: = Usually better optimized vectorization
= Finds un-vectorized loops = Better compiler optimization messages

Analyze SIMD, AVX, AVX2, AVX-512

Dependency Analysis — safely force _ S _
vectorization with a pragma = Finds |neﬁ:|C|ent|y vectorized IOOpS and

estimates performance gain

Intel Advisor with Intel Compiler Adds:

Memory Access Pattern Analysis -

optimize stride and caching = Compiler optimization report messages
Trip Counts displayed on the source

FLOPS metrics with masking = More tips for improving vectorization

Roofline Analysis — balance memory vs. = Optimize for AVX-512 even without AV X-
compute optimization 512 hardware

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Configurations for 2010-2017 Benchmarks

=0

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding ®
the specific instruction sets covered by this notice. Notice revision #20110804

4= Vectorized
N & Threaded

10° Binomial Options Per Sec. SP

. Y. Vect ec
o — - : Serial
Performance measured in Intel Labs by Intel employees 2010 2012 2013 2014 2016 2017
Platform Hardware and Software Configuration
Unscaled Ll HIW
Core Cores/ Num Data L2 L3 Memory Memory Prefetchers HT Turbo o/s
Platform Frequency Socket Sockets Cache Cache Cache Memory Frequency Access Enabled Enabled Enabled C States Name Operating System Compiler Version
Intel® Xeon™ ; Fedora . n
WSM X5680 Processor 3.33 GHz 6 2 32K 256K 12MB 48 MB 1333 MHz NUMA Y Y Y Disabled 20 3.11.10-301.fc20 icc version 17.0.2
™
SNB Intel® Xeon™ ES 5 g gz g 2 32K 256K 20MB 64 GB 1600 MHz NUMA Y Y Y Disabled 9% 31110301420 icc version 17.0.2
2690 Processor 20
™
VB ntel®Xeon™ ES 57G6Hz 12 2 32K 256K 30MB 64GB 1867 MHz NUMA Y v Y Disabled "H'=L 3.10.0-229.el7.x86_64 icc version 17.0.2
2697v2 Processor 7.1
Intel® Xeon™ E5 ’ Fedora 3.15.10- . .
HSW 2600v3 Processor 2.2 GHz 18 2 32K 256K 46 MB 128 GB 2133 MHz NUMA Y Y Y Disabled 20 200.fc20.x86_64 icc version 17.0.2
™
gow Me@Xeon™ES 5, g 2 32K 256K 46MB 256 GB 2400 MHz NUMA Y Y Y Disabled RHEL 3.10.0-123. el7.x86_64 icc version 17.0.2
2600v4 Processor 7.0
™
BDW ;%tgé@\f 4X§:’0”ceSSEo5r 22GHz 22 2 32K 256K 56MB 128 GB 2133 MHz NUMA Y Y Y Disabled Ce;“zos 3.10.0-327. el7.x86_64 icc version 17.0.2
Intel® Xeon®
SKX ; ; CentOS 3.10.0- ’ ’
Pllajtrlgsénsssolrxx 2.5 GHz 28 2 32K 1024K 40 MB 192 GB 2666 MHz NUMA Y Y Y Disabled 73 514.10.2.¢17.x86_64 icc version 17.0.2

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

Legal Disclaimer & Optimization Notice

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and
"Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS 1S”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in
the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

