
© Atos - For internal use

2020

Compiling

| dd-mm-yyyy | © Atos - For internal use

▶ Choosing minimum architecture:

– icc -xSKYLAKE (or -xCORE-AVX512)

– icc -xCASCADELAKE

▶ The extra VNNI instructions in the Cascade Lake architecture are not relevant
for most HPC applications

– However, if you have many integer computations, it may give benefits

▶ A good compromise for both CPUs is to use -xCORE-AVX512

– Or even to try -xCORE-AVX2

2

Intel compiler

| dd-mm-yyyy | © Atos - For internal use

▶ Choosing minimum architecture:

– gcc -march=skylake

– gcc -march=skylake-avx512

– gcc -march=cascadelake (from GCC 9)

▶ The extra VNNI instructions in the Cascade Lake architecture are not relevant
for most HPC applications

– However, if you have many integer computations, it may give benefits

▶ A good compromise for both CPUs is to use -march=skylake-avx512

– Or even to try -march=skylake

3

GCC compiler

| dd-mm-yyyy | © Atos - For internal use

▶ -O0: reduce compilation time and make debugging work

▶ -O2: high optimization

▶ -O3: more aggressive optimization, results usually change

– verification

▶ Intel compiler uses -O2 by default

▶ GCC uses -O0 by default

4

Standard optimization flags

| dd-mm-yyyy | © Atos - For internal use

▶ If your code uses many small function calls, the overhead of a function call can
be higher than the function itself. Inlining can help to remove the overhead.

▶ Intel compiler

– -ip

▶ GCC

– -inline

5

Inlining

| dd-mm-yyyy | © Atos - For internal use

▶ Intel compiler

– Compiler flag -ipo

– Link your applications and libraries using xild (dynamic libs), xiar (static libs)

▶ GCC compiler

– Compiler flag -flto

6

Link-time optimization

| dd-mm-yyyy | © Atos - For internal use

▶ -g -O0

– higher optimization levels will also work, but your debugger gets confused

▶ Intel compiler

– -check uninit

– -check bounds

▶ GCC

– -Wall -Wextra -Wpedantic

– -std

– -fbounds-check (Fortran)

7

Debugging flags

| dd-mm-yyyy | © Atos - For internal use

▶ Intel compiler

– -mkl=sequential, parallel, cluster

– -static-intel might improve performance, if many calls to MKL are made
(combine with -ipo and xiar)

▶ GCC compiler

– Use the Intel MKL Link line advisor to find the right compile & link flags

▶ Use it as a drop-in replacement for the FFTW library

8

Using the MKL library

https://software.intel.com/content/www/us/en/develop/articles/intel-mkl-link-line-advisor.html

| dd-mm-yyyy | © Atos - For internal use

▶ -fp-model=

– source: intermediate results are rounded, plus precise

– precise: strict ANSI conformance

– strict

– consistent

– fast

– fast=2

▶ http://software.intel.com/en-us/articles/consistency-of-floating-point-results-
using-the-intel-compiler/

9

Slower with more accuracy, or
Faster with less accuracy

http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler/

| dd-mm-yyyy | © Atos - For internal use

▶ faster allocations

▶ C++ code could benefit from using this library

▶ Link your application with -ltbbmalloc_proxy

▶ At runtime, set export LD_PRELOAD=libtbbmalloc_proxy.so

– Library is found automatically if the intel module is loaded

10

Using libtbbmalloc_proxy

Atos, the Atos logo, Atos Syntel, Unify, and Worldline are registered trademarks of the
Atos group. December 2019. © 2019 Atos. Confidential information owned by Atos, to be
used by the recipient only. This document, or any part of it, may not be reproduced,
copied, circulated and/or distributed nor quoted without prior written approval from Atos.

Thanks for your attention
john.donners@atos.net

